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This article proposes an idea of a practical procedure for obtaining the parame-
ters of econometric model in more robust way than least squares, which is nonrobust
in the sense that arbitrarily small departures of the error term from normality may
cause arbitrarily large asymptotic variances and/or biases of the estimator. The ro-
bust estimator adopted in this article belongs to the class of general M-estimatoys,
and is reduced to the iteratively reweighted least squares. Using this algorithm, it is
necessary to find the initial estimate and the weight function. The least median of
squares estimate is recommended for the initial estimate, and the robust diagnostic
quantity for detecting the influential observations on the least squares estimate is de-
vised for defining the weight function.
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1 Introduction

Linear regression model is useful for specifying the economic relation-
ships. In this model, the error term is assumed to be the sum of innumerable
independent elements, and the random variable “approximately” normal dis-
tributed by virtue of the central limit theorem. And, the method of least
squares is a valuable instrument for estimating the parameters of the econ-
ometric model, because this estimator is uniformly minimum variance un-
biased under the normal error assumption. The economic relationship esti-
mated by the least squares is considered to be stable and reliable, under the
normal error.

Now, let { (y;, x) : 1<i<n} be a sequence of independent indentically dis-
tributed (p+1)-dimensional vectors of observations, satisfying the regression
model of the form

yi=xB+u, an

where B is a (px1)-vector of unknown regression parameters. The error term
y; is independent of x;, and indenpendent indentically distributed with dis-
tribution function F(u). This error model is assumed to be expanded to some
neighbourhood of the normal distribution N (0, ¢%), which should be re-
garded as the “central model”, in the sense that for 0<e<1

F=0-9N+eH, (1.2)

where H is an arbitrary distribution. Then the distribution of (y,, x;) is given
by

d(y, ¥) = F(wG(x). (1.3)

In empirical works, the least squares is criticized for being not robust, in
the sense that although it is optimal when u is normally distributed, its effi-
ciency for non-normal u may be arbitrarily low, and its bias arbitrarily large,
even for u arbitrarily close to the normal.

In practice, the main reason for departure from the normal error assump-
tion is due to the erroneous data which is occured by some sources for gross
error such as blunders in meaning, wrong decimal points, input errors, miss
copying and so on. Erroneous data shows up as outlier which is far away
from the bulk of data. The term of outlier is used to mean an observation
which does not appear to be from the same distribution as the remainder of
the data. Even a single outlier in a large sample is able to have a drastic ef-
fect on the estimate.
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The gross error may happen in both of y- and x-data. Outliers in y-data
often possess large positive or negative residuals. The diagnostic quantities
for detecting outliers in y-data are generally based on the residual from least
squares fit. When outliers exist in given y-data, the estimated parameters by
least squares are biased. This matter affects the residuals from least squares
fit, hence detecting outliers. The residual mean squared error is inflated
over many data points, and where the residuals from least squares fit are
prone to stain the effect of outliers. Using the least squares residual, outliexs
make their detection more difficult. It is, therefore, inevitable to robustify
the residual.

Outlying vectors in x-data set have more opportunities to make a large ef-
fect on the least squares estimate. A single outlying vector of x-data will
completely blow up the fitted value.

Hoaglin and Welsch (1978) proved that diagonal elements of the projec-
tion matrix of the form X(XTX) X7,

h, =x; X™X) %", 1<i<n, (1.9

are diagnostic quantites for detecting extreme vectors of x, where X = (x; X,
« » + + x )T and superscript T denotes transposition.

In using the least squares, it is necessary to test whether the error term
fulfills the normality or not. Since every observation could be a gross error,
the normal error assumption is not always valid. When the error term is
non-normal, the problem is to estimate the parameters of the model (1.1) us-
ing data (y;, x)) drawn from the distribution (1.8). It is, in this case, proper to
take a robust estimator which supplements and modifies the conventional
methods, by adding the aspect of robustness. The robust estimation is con-
cerned with obtaining the estimate with low sensitivity to aberrant observ-
ations, such as outliers, in exchange for an arbitrarily small loss in effi-
ciency.

Later chapters provide a practical procedure for obtaining the parame-
ters of econometric model (linear regression model) in robust way, with aid
by the results which were presented in the recent development of the robust
regression methodology.

2 Assessment of Robustness and Robust Estimator for Re-
gression

In robustifying estimator, it is need to consider two important robustness
properties. The first is to provide a reliable estimate which is still staying in
some neighbourhood of the true parameter value, even if given data is con-
taminated by gross error. The second is to react as little as possible to any
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single observation blown up by gross error. This low sensitivity to aberrant
observation means a small bias or a stability of the estimator. The second
property, however, is in conflict with the efficiency requirement which is the
low asymptotic covariance of estimator. The more robustness in the'sense of
low sensitivity to any observation, the less efficiency.

The degree of robustness in the sense of the first property may be mea-
sured by the concept of breakdown point which was introduced by Hampel
(1971). Donoho and Huber (1983) defined the sample version of this con-
cept. The finite sample breakdown point is the maximum fraction of aberrant
observations which given data may include, without causing the estimate to
take an arbitrarily large value.

According to Huber (1973), the basic idea of robust estimator for regres-
sion is defined as the solution of objective function, which is a function of re-
sidual other than the sum of squares, of the form

Q@ 0= ip ((y;-x; f)/0) = minimum, 2.1
=1

where p-function is symmetric with unique minimum at zero. If it has deriva-
tive ¢, ¢ = p’, then (2.1) is equivalent to

Y ¢(G;—x B/ xT=0. (2.2)
i=1

The ¢-function in (2.2) is chosen to limit the influence of grossly errone-
ous observation of y-data. The scale estimate & may be independently oba-
tined in robust way. This type of estimator is belongs to M-estimators.

M-estimators are statistically efficient, however, the bias of these estima-
tors is not robust. Its breakdown point is 1/n, because the g-function is not
effective to bound the influence of outlying x-vector.

An attempt to correct the drawback of M-estimators is the proposal of
general M-estimators defined as the solution of the form

i ¢, @, — %, B/o)xT =0, 2.3)
=

where the ¢-function is chosen to bound the influence of aberrant observ-
ations in both y- and x-data. Maronna, Bustos and Yohai (1979) proved that
general M-estimates have a breakdown point of 1/p, which tends to zero
when the number of explanatory variables, p, increases. This class of estima-
tors contains the optimal bounded influence estimates obtained by Krasker
(1980), and Krasker and Welsch (1982).

Recently, several regression estimates with high breakdown point were
introduced, i.e. Siegel (1982) presented the repeated median (RM) estimate,
Rousseeuw (1984) proposed the least median of squares (LMS) estimate and
the least trimmed squares (LTS) estimate. However, all of these estimtes
have very low efficiency when all observations of variables satisfy the regres-
sion model with normal error.
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Yohai (1987) presented a class of estimates, which he named MM-estim-
ate, having simultaneously high breakdown point and high efficiency under
the normal error. Yohai and Zamar (1988) presented an alternative class of
estimates, which was defined by minimizing a new estimate of the scale of
residuals, having same properties as Yohai (1987).

3 General M-estimate with High Breakdown Point

One procedure is proposed, in this section, for obtaining the general
M-estimate with high breakdown point.

Generally the equation (2.3) is a set of non-linear equations, therefore an
iterative method is required. It is indispensable for iterative algorithms to
give an initial estimate. Yohai (1987) proved that, if an initial regression es-
timate with high breakdown point but not necessarily efficient is computed
in the iterative method for M-estimate, then under reasonable conditions the
M-estimate has high breakdown point. An initial estimate with high break-
down point is necessary to get a high breakdown general M-estimate.

The iteratively reweighted least squares (IRLS) algorithm with fixed scale
parameter was proposed by Beaton and Tukey (1974) as an iterative tech-
nique for obtaining M-estimate. The connection between IRLS and M-estima-
tor depends on choosing the weight function.

In the case of general M-estimator, if the weight function is defined as

w; &, G~ % B/0) = ¢ (x, G — % By, —x /o), 6.1
then the equation (2.8) becomes the weighted least squares estimator

Y w G, &y — % B/0) (v — % BxT = 0. (3.2

=1

Since the weight function (3.1) depends on B and o, parameter estimates
can not be immediately obtained by solving equation (3.2). The equation sug-
gests to consider the IRLS for B.

If current value Bt and scale estimate o (fixed) have been obtained, at
each step substituting the current value into the weight function, then hold-
ing it fixed, it is possible to solve the equation (3.2) to get next value f,,,. It
follows that

B = Bt-l-zwvt - x B =T /wat X,
W, =w, (x, (v, — x; B/ 0). (3.3)

Thus the general M-estimator is reduced to IRLS. This algorithm is able
to use the existing least squares computer package other than to compute
the weight function.
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Huber (1981, p. 184) investigated the convergence conditions of IRLS.
However, it is difficult to arrange the strict conditions for its convergence.
This algorithm is expected to converge to a local minimum, by using the
bounded monotone decreasing weight function. Therefore, it is crucial to get
an initial estimate having good property.

Rousseeuw (1984) proved that the least median of squares (LMS) estim-
ate, which is defined as the value satisfying

minimize median (y; — x; )2, 3.4)

4 i

has the finite sample breakdown point of {(n/2)—p+2}/n. This is asymptoti-
cally 50%. The breakdown point of fifty percent is the highest value one can
expect (for large amount of contaminated observations in a sample, it is im-
possible to distinguish between the ‘good’ and ‘bad’ parts of the sample). The
LMS estimate is acceptable 50% of contaminated obaservations in a sample
without spoiling the estimate completely.

Therefore, the LMS estimate is proper for the initial estimate in IRLS to
obtain the general M-estimate with high breakdown point. It is, however,
mathematically impossible for multi-dimensional case to derive a straigh-
tforward formula of LMS estimate from the definition in (3.4). The computa-
tion method of LMS was devised by Leroy and Rousseeuw (1985).

In addition to the initial estimate of regression parameters, it is need to
estimate the scale parameter in robust way. Rousseeuw (1984) proposed the
scale estimate based on the equation

S = 1.483 Cln,p) {min. med. (; — x; ﬁ)z}l/ 2 (3.5)
B i

where the value of 1.483 is an asymptotic correction factor for the normal
error. The constant C(n,p) is a finite sample correction factor to be deter-
mined empirically, and necessary to make Sy approximately unbiased when
the simulating samples with normal distribution. According to Leroy and
Rousseeuw (1985), the constant is given by

Cln,p) = {1+5/(n—p)}. (3.6)
4 Sensitivity and Weight Function

Robust estimators are required to have low sensitivity mentioned in sec-
tion 2. In order to define the weight function of (3.2), which makes the sensi-
tivity of IRLS lower, the sensitivity of ordinary least squares is considered.

Hampel (1974) introduced the influence function, IF (y,x), which mea-
sures the degree of the bias robustness of an estimate when the distribution
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of the central model is subject to an infinitesimal contamination. And, he de-
fined the sensitivity by the norm of the influence function:

v * = supllF(y,x)! = sup{IF(y,x)"IF(y,x)}"/2 (4.1d
y.x ¥X

The sensitivity measures approximately the maximum influence of a
single observation on the estimate f§. Krasker and Welsch (1982) presented
the alternative definition of the sensitivity of estimator for regression such
that

v " = sup{IF(y,x)T V! IF(y,x)}""%, “.2)
VX .

where V is the covariance matrix of the influence function.
Instead of the influence function of least squares estimate, next quantity
is considered at the central model,

(y;— %, b) (4.3)

where b denotes the least squares estimate of f and b(i) is its estimate with-
out i-th observation. This quantity measures the influence of i-th observation
on the least squares estimate.

Quantity (4.3) is devided by the scale estimate of b, which is {S*XT
X)™12 comparable to V and S denotes the estimate of 0. The quantity, (b—b
@)/{8? (X™X)"'}”2, remains unchanged when the observations are shifted
(rescaled). Then, this quantity is squared to convert it to the scalar. Since
b-Db GNT (b-b () is linear combination of p elements, the squared quantity
may be shown as the form of

(y; — xb)? h;

D (1) = psz * (l—ili)z . (4.4)

In order to robustify the quantity (4.4), it is necessary to replace b with ﬁ
estimated by LMS method and S with Sy obtained in the equation (3.5).
Thus, the quantity (4.4) is modified such as

S (Yi_xiﬁ)z . b
ROBUST D(l) - pSZR (l_hl)g . (4.5)

In the sense of equation (4.2), the quantity (4.5) may be regarded as the
I
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‘squared’ sensitivity of the least squares estimate, and useful diagmostic
quantity for detecting influential observations on the least squares estimate.
Furthermore, this quantity is followed by F{p, (n—p)) distribution at the cen-
tral model.!

As far as given observations keep finite value, ROBUST D() is finite. If an
observation is aberrant, it takes a large value. However, it is possible to
make the high sensitivity of least squares more lower, by making use of the
weighted least squares. The sensitivity of the weighted least squares estim-
ate to i-th observation may be expressed by the form of

Y. @ = w, (v, %, §) - ROBUST D(@), 4.6)

where w; (y;, x;, B) is the weight to make the sensitivity lower.

In the weighted least squares, the weight should put an observation less
weight than one only if its influence to the estimate would exceed the maxi-
mum allowance value, and all other observations would be given a weight of
one. The maximum allowance value is set, by making use of the F-statistic,
such that

D* =F {o:p, (n—p)} “.n

with significance level a.

The weight function for JRLS must satisfy the condition, v, () < D*, By
(4.5), (4.6) and (4.7), the weight function for IRLS at t-th step is defined as
follows:

1 for ROBUST D,() <D*

Wi, I X5 ﬁt) = {
D*/ROBUST D,(i) for ROBUST D, > D* ,

G- Xiﬁt)z b

ROBUST D,(i) = P52 * (1_}111)2 s

4.8

where ﬁt=0 is the initial estimate of regression parameter.
For ROBUST D,() > D*, this weight function is bounded and monotone
decreasing.

5 Concluding Remarks

For the purpose of feasibility of the general M-estimator, it is reduced to
the method of iteratively reweighted least squares. Instead of defining the
¢-function, the weight function which is effective in making the influence of
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aberrant observations lower is directly given for this procedure. In order
that the IRLS estimate of regression parameters may have high breakdown
point, the least median of squares estimate is taken as its initial value. The
initial estimate with high breakdown point is very crucial to make an itera-
tive procedure provide a robust estimate.

The procedure treated in this paper is able to fit a regression line to the
majority of given data, then discover the influential observations as those
points which have a large value of the ROBUST D@).

Asymptotic properties of this robust estimator, which are consistent and
asymptotically normal, can be obtained from the Theorems of Maronna and
Yohai (1981). However, its covariance matrix does not coincide with that of
the least squares estimate at the central model, because it sacrifices the effi-
ciency a little in order to make its sensitivity to aberrant observations of
both y- and x-variable lower.

Asymptotic normality of this estimator ensures that conventional t-statis-
tics and F-statistics for hypothesis testing of regression parameters are
asymptotically valid. These test procedures are only valid asymptotically, so
that the precise level of significance is not emphasized.

1 As long as u and x are completely independent and x is fixed at x; x, * * * x,, the
random variable x does not affect F-distribution statements (Graybill (1976),
p.382).
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