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Minimal viscoelastic model for myocardial systems

Naoaki Bekki! and Yoshinori Nagai?

Abstract: We present a minimal viscoelastic model for cardiac dynamics in myocardial motion and extend the
reductive perturbation method for an unstable dissipative system. We derive heuristically the one-dimensional Complex
Ginzburg-Landau equation from the viscoelastic model with instabilities in a certain parameter region.

1. Introduction

In the previous century, molecular biology of the cell has been tremendously developed [1]. It is
well known that the contraction of muscle occurs by the sliding mechanism between two types of myo-
filaments [2]. A theory based on the idea of a cross-bridge rotation mechanism was proposed by Huxley [3].
There exists the regulation of Ca?* -release/uptake of sarcoplasmic reticulum (SR) due to the deformation
of SR by the force generated by cross-bridges. Also, the auto-oscillatory properties inherent to the contrac-
tile system of striated muscle have been investigated [4]. Ishiwata et al found that the auto-oscillation of
sarcomere length (SL) occurs under the steady conditions intermediate between full contraction and relax-
ation conditions. They named the phenomenon after the Spontaneous Oscillatory Contraction of myofibrils
(SPOC) [4, 5].

On the other hand, a variety of complex patterns which include spiral waves [6] and the spontaneous
response of the myocardium to electrical excitation have been observed in human heart by developing an
ultrasonic noninvasive novel imaging modality with high temporal and spatial resolutions [7]. Visualiz-
ing the propagation of the myocardial response of the electric excitation in human hearts during systole,
Kanai [8, 9] observed the velocity components toward the ultrasonic probe as waveforms and their in-
stantaneous phases of 40 [Hz] components. A velocity component corresponding to the contraction was
generated on the septum at a time of T-wave of ECG (end-systole), and propagated slowly in clockwise
direction along the left ventricle circumferential direction. Thus, the behavior of phase defects in a human
healthy heart is one of the most interesting subjects in biophysics. In order to explain its behavior in a hu-
man healthy heart, a certain model of explanation is therefore needed on the basis of the direct observation
of phase singularities. Bekki et al [10] recently proposed a possible physical model explaining a part of
cardiac dynamics of these phase jumps on the interventricular septum (IVS): they have shown that at least
one of the phase defects in the nonlinear excited waves on a human cardiac IVS can be explained by the
Bekki-Nozaki hole solution [11] in the complex Ginzburg-Landau equation (CGLE).

A wide class of nonlinear waves for strong dispersive and dissipative systems can be described by the
one-dimensional nonlinear partial differential equations which are called the driven damped nonlinear
Schrodinger equation [12, 13, 14] or CGLE [15, 16, 17, 18, 19]
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Equation (1) is called the nonlinear Schrodinger equation for the case with coefficients p; = ¢; = v = 0,
and CGLE for the case with two complex constants (p = p,. + ip;, ¢ = ¢, + %g;) and real positive
constant y. Here 1 is a complex function of scaled time ¢ and space x. Equation (1) is invariant under
a global change of gauge which is the multiplication of 1 by exp(i¢), as a consequence of translational
invariance of the system. Equation (1) also reduces to the nonlinear Schrodinger equation in the limit
|prl, lgr] — o0, which soliton solutions are integrable. The CGLE, however, describes a complex nonlinear
development in a nonintegrable dissipative open system and is not tractable for analytic investigations,
despite its great importance. One of the exact solutions of CGLE connects two different patterns specified
by the asymptotic wavenumbers and a phase-jump between two patterns, which is called the Bekki-Nozaki
(BN) hole [11]. However, very few experimental investigations of BN hole have been reported up to
now [21, 20]. Some localized amplitude holes have been observed in the hydrothermal nonlinear waves,
and not completely compared with BN hole solution in CGLE [21]. Therefore, the estimation of the
rescaled coefficients of CGLE from the experimental data is a difficult task.

We present here a nonlinear viscoelastic model from which CGLE can be derived by use of a modi-
fied reductive perturbation method [22] instead of the center manifold theory for the chemical diffusion
systems [23]. The CGLE (1) arising from unstable dissipative systems can be derived by different methods.

2. Basic Equations of Isotropic Elastic Body

A set of basic equations for a myocardial system assumed as an isotropic elastic body is given as follows:
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where p denotes a density of elastic body, u; a velocity component and P;; a stress tensor, respectively,
A and p are Lamé elastic constants. Also, K; (i = 1,2,3) is an external force taken into account of
instability of the system. For simplicity, let us consider one-dimensional longitudinal viscoelastic waves,
which is written in a matrix form:
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where U is a column vector with 3 components, U = (p, u, P11), and B(U) is also a column vector; A(U)
and C(U) are 3 x 3 matrices, which are functions of U, being assumed sufficiently smooth; x and ¢ are
the space and time coordinates, respectively. Here B(U) is assumed to be a column vector containing an
instability for the viscoelastic model. Many physically interesting problems involving strong dispersion
and dissipation may be described by this model with instability.

The uniform state is given by a constant solution Uy satisfying the algebraic equation
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B = B(Uy) =0, (©6)
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where Uy = 0

0
3. Modified Reductive Perturbation Method

Let us consider a nonlinear amplitude modulation of the nearly monochromatic plane wave subject to
Eq. (5), that is,

U = Uy + 6U expli(kz — Qt)] + complex conjugation, €))

where k is the real wavenumber and €2 the complex frequency near the critical wavenumber kg. Then,
linearizing Eq. (5) about Uy, we have the dispersion relation:
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where

A©) = AUy,
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cO = C(Uy).

Above dispersion relation yields the domain of existence for the wave. Hereafter, we focus all our attention
on the wave for the case of the small imaginary part of the complex frequency: I(2) = . In Q(ko) thus
obtained, we may assume for || # 0,

det W # 0, ©)
where the matrix W is defined by
W, = —ilQ;4 + ilkA©® + VBO 4 220, (10)

According to the extended reductive perturbation method by Asano [22], we introduce the slow variables
through the stretching

§= 6(.’1) - ’Ugt)7
T = €%, 11

where the parameter v, is determined through a compatibility condition as the complex group velocity
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N
v = 5 (12)

and € is a parameter specifying the smallness of the amplitude.
Let us assume the following solution;

U=Up+ Y U™, (13)

a=1

where

U@ = 3" v nx,

l=—

X, = explil(kz — Qt)].
As the reality condition, we have
U@ =y, (14)

where the asterisk denotes the complex conjugation.
The expansions of A(U), B(U) and C(U) can be given in terms of U as follows;
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The expansions of matrices B and C are similar to A.
Substituting these expansions into Eq. (5), and equating the various powers of € of the [—th harmonics
to zero, we get

w,u) =0, (16)
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where the angle bracket denotes the coefficient of the /-th harmonics, that is, for any function F’,

o]
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Since we consider the nonlinear amplitude modulation of the plane wave with the complex frequency £2
and the wave number k, U, l(l) must be zero for |I| # 1. therefore, we have

uM =0 for |I|#£1, (19)
while
UV =¢R  for 1=1, 20)
where R is the right eigenvector of Wy,
WiR =0, @2n

and ¢ ia a scalar function of the slow variables to be determined later.

The third, fourth and fifth terms on the left hand side of Eq. (17) result from the self-interaction of the
fundamental mode and it is obvious that they are non-vanishing only for |/| = 2 and [ = 0. Hence, for
I =1, Eq. (17) becomes

)
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As Eq. (22) must be algebraically solvable for U1(2), the compatibility condition is required as follows,
L( = vylia + A© - 2ikCO )R =0, 23)
where L is the row left eigenvector of W7y, that is,
LWy =0. 24)

The solution Ul(z) of Eq. (22) is written in terms of an arbitrary function ¢ (&, 7) as follows
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R

U® = Rp® — 5% 76 25)
Further, the component with [ = 0 of Eq. (17) becomes
WoU? + ik (VA<°> vu® c.c.) n %(VVB(O) UQU® 4 c.c.)
k2 (VC(°> vu® 4 c.c.) —0, (26)
and yields Uéz) in the form
Us? = R |92, @7
where R(()z) is a column vector, satisfying
WoR( +ik(VAOR'R —c..) + % (VVB®: R'R+c.c)
+k2(VCOR'R + c.) =0, 28)
If getWy # 0, we have
R = W' [ik(VAOR'R—cc.) + % (VVBO: R'R+cc)
k2 (VC’(O)R*R + c.c.)} , 29)
where Wy ! denotes the inverse matrix of Wj. Other components of U(2) are similarly given by
Uy? = RY(9)%, (30)
UuP =0 for |I|>3, 31)
with
RY = —w;t [ikVA(O)RR + %VVB(O) : RR+ k? VC’(O)RR} , 32)

where Wy~ ! stands for the inverse matrix of Ws. It is notable that the nonlinear terms in Eq. (18) do not
contain ¢(? for |I| = 1.

4. Derivation of CGLE from Nonlinear Viscoelastic Model

We are now ready to determine ¢(&, 7). Multiply Eq. (18) for [ = 1 by the left eigenvector L from the
left, and substitute the solutions of U into Eq. (18) with [ = 1. Then, by means of Eq. (24), the first term
disappears, and the compatibility condition Eq. (23) eliminates ¢(® in the second term. Consequently, it
reduces to an equation for 1) = ¢(x, t), that is, the complex Ginzburg-Landau equation (1),
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5. Conclusions

We have heuristically derived the Complex Ginzburg-Landau equation from the nonlinear viscoelastic
model by means of the modified reductive perturbation method [12, 22]. By the novel ultrasonic method[8],
we have obtained the significant data of phase-defects in the excited waves due to the mechanical motions
of the aortic-valve in a time of aortic-valve closure at end-systole. Although it is difficult to estimate all the
coefficients of CGLE from the observed data, we found consistently all the corresponding coefficients of
CGLE. We have already shown that the dynamics of nonlinearly excited waves on the septum wall in vivo
can be described by BN hole solution in the direct comparison between the data of the noninvasive direct
measurements and BN hole solution with the corresponding coefficients. We have succeeded in obtaining
the data related to the BN hole and in confirming physically that these data of excited waves on the septum
wall in vivo can be explained by BN hole solution in CGLE [10]. We have found the first evidence of
the BN hole generated by the nonlinear modulation of the excited waves on the septum wall. It should be
noted that the coefficient I(p) = p; based on the present model plays an important role in estimating the
cardiac viscoelasticity of human heart. We can apply our viscoelastic model to the cardiac systems. These
results will be published elsewhere.
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