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Synopsis: Oscillator networks in the form of triangular and square prisms are investigated. These
kinds of networks can be represented by regular graphs of degree 3. The oscillations that appeared in the
two colorable graph type of network consisting of passive oscillators were rigidly stable for parameter
changes. Oscillations resembling spindle-like waves are found in two layered networks consisting of passive
oscillators. Networks consisting of active oscillators keep the characteristics of each active oscillator, but
characteristic oscillations appear at lower parameter values than those that appear in isolated oscillators.
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1. Introduction

We designed two types of oscillatory elements using one-dimensional mapping of a cu-
bic function [1]. Two types, pand ntype of 1D oscillators, result for positive and nega-
tive signs of the cubic function f (x )＝Ax(1－x2)＋x. In the present paper, we investigate os-
cillatory features for networks where those 1D oscillators are connected to each other. The
previous study [1] was devoted to investigating the fundamental properties of those two types
of 1D oscillators and the control characteristics obtained by connecting those oscillators.
We also studied a network of four nand poscillators [2] where the interaction among 1D
oscillators was taken as the average of the inputs from other oscillators, in other words, each
1D oscillator was totally governed by its neighboured oscillators, implying no self quantity
in the oscillator function.

The current study seeks to ˆnd the oscillatory properties of prismic networks. The struc-
tures of prisms are isomorphic to the regular graphs of degree 3 (hereinafter referred to as 3
regular graphs, following the graph theory terminology of the textbook by R. J. Wilson [3]).
Thus it becomes an interesting subject for us as to whether or not the graph structure in a net-
work re‰ects on the oscillatory features of the network. Polygon prisms of an even number
corners can be made such that no neighbouring oscillators are of the same type. This means



―  ――  ―

Memoirs of the Kokushikan Univ. Center for Information Science. No. 26 (2005)

that the polygon prisms of even numbers of corners reduce to two colorable graphs [3]. In
the case where each oscillator is passively driven only by the average input level incoming
from the connected oscillators, it is expected from previous study of four oscillator networks
that the two colorable graph type of networks will an oscillatory nature of a total network
system, such that the nonlinearity realizes pulse-like oscillations. We also examine the oscil-
latory features of two layered networks where one layer is a formed with one kind of oscilla-
tors, and the other layer composed of the opposite type of oscillators. Moreover, every oscil-
lator of each network layer is connected to the corresponding oscillator of the other layer in
the manner of a 3regular graph.

The present study also investigates the diŠerence of oscillatory features between active
and passive characteristics of the oscillator properties. We say that a oscillator is active for
the input-output relations of the form O (x)＝f (x, A)＋m(I (x )), and a oscillator is passive
when the input-output relation has the form O (x )＝f (m(I (x, A))), where m(I (x, A)) indicates
an operation for the input quantity I(x ), O (x ) denotes output, and I (x ) is the input. In the
latter case, namely, passively behaving oscillators, these systems organize into synchronous
oscillations of each element of a two-colorable oscillator network, that is to say a large-scale
oscillator as operating as a network system.

In section 2, we discuss the general properties of prismic networks from the viewpoint of
graph theory, and note that coloring graphs of two colors are possible for prismic networks
of even numbers of polygon corners. Section 3 shows the oscillations of prismic networks
that deˆne a class of 3regular graphs. Two input-output relations of active and passive os-
cillator properties are simulated numerically for two layered networks and two-colorable
networks. Here we examine networks of triangular and square prisms only. In section 4 we
discuss generality of the results obtained in section 3, and a few applications of the oscillator
networks considered here.

2. Network Property of Prism Shapes

Networks of prismic form can be represented as 3regular graphs. Then, we see that
prismic forms of networks are isomorphic to the 3regular graphs. Thus, we take some ideas
from the graph theory. The arrangement of diŠerent types of oscillators in a network
becomes the same as the question of whether or not the graph presented is colorable with n
colors. Graph theory can supply all the diŠerent types of networks composed with n diŠerent
types of network elements. We therefore investigate the general properties of a class of net-
works characterized by a graph property.

In the 3regular graph type of networks, the 1D oscillators are located at each corner
point of a prism and output-input connections (sides or edges of a prism) operate both ways
between pairs of neighbouring oscillators. Examples are seen in (a) and (b) of Fig. 1. Taking
input-output relations between connections of neighbouring oscillators into account, the
graph for these kinds of networks becomes an oriented one. In the present study, it is not so
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Fig. 1 Graph representation triangular and square prisms
The right side pictures (a′) and (b′) are graphs for triangular prism (a) and square prism (b).
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important whether the graph is oriented or not, because input-output connections always
operate both ways for every pair of neighbouring oscillators. Here we consider networks
consisting of pand ntypes of oscillators so that the two-colorable property of 3regular
graphs becomes of interest for diŠerent arrangements of oscillator types. Thus, we examine
how the oscillatory features change for diŠerent arrangements of the two types of oscillators.
This point is well related to the problem of whether a graph is two-colorable or not.

As seen from Fig. 2, we know only that the 3regular graph corresponding to the poly-
gon prism of an even number of corners can be colored completely with two diŠerent colors.
The polygon prism of an odd number of corners will frustrate attempts to color a 3regular
graph corresponding to the odd polygon prism by two diŠerent colors. It is therefore clearly
expected that the oscillatory features are diŠerent in the oscillator networks of the polygon
prisms for even and odd numbers of corners. Oscillator networks of even corner-numbered
polygonal prisms can be regarded as networks of four oscillator groups which were studied in
ref. [2]. Thus similar oscillatory properties are expected even though oscillatory features are
governed only by the parameter A in the 1D oscillator.
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Fig. 2 Two layered networks and two colored networks
The left side is two layered networks and the right side two colorable graph type networks. The two
colorable graph type of network is shortly called two colored network. The P1 to P3 or P4 are number-
ing for ptype oscillators and the N1 to N3 or N4 are those for ntype oscillators. Oscillations of oscil-
lators are recognized by P1, P2, ..., and N1, N2, ...in the ˆgures for oscillation features.
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3. Oscillatory Features for the Networks in the Shapes of Triangular and
Square Prism

The triangular prismic network consists of six 1D oscillators, one at each corner. This
network has the same number of the two types of oscillators, i.e., three ptype oscillators
and three ntype oscillators. Similarly the square prism shape consists of four ptype oscilla-
tors and four ntype oscillators. The networks studied in this paper are those shown in Fig.
2.

To consider how the properties of 1D oscillator networks depend on the output-input
relation between connected neighbouring oscillators, two kinds of output-input relations
were taken into the account in the one thought. One is additive input to each oscillator which
has self-sustaining oscillations with a parameter, and another is that every oscillator
governed by the inputs from connected oscillators, namely, each oscillator has no self quan-
tities. We call former type oscillator network an active oscillator network, and latter type a
passive oscillator network.

The numerical calculations in this study were carried out changing the parameter value
A for each of the nonlinear 1D oscillators. The ptype and ntype oscillators in each net-
work make pairs like (P1, N1), (P2, N2), et al. The procedure of parameter changes is fol-
lows Select a set of ptype and ntype oscillators to change the parameter A in the same
manner, and ˆx the parameters of the other oscillators with small deviations. Thus the
parameter changes occur at the same time for each pair of ptype and ntype oscillators. The
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initial values of oscillating quantities are the same for all 1D oscillators in the network.
In the present section, we show the numerical results for thee property sets, namely,

(two layered, two colored), (triangular prism, square prism) and (active, passive). Here ex-
amples of oscillatory features are shown for those 8 cases obtained by combination of the
three independent properties.

3.1 Active Oscillator System

The active oscillator considered here is described by the following recurrence equation,

xj(t＋1)＝±A(x 2
j (t )－1)xj(t )±xj(t )±

1

∑
k

ejk
∑

k
ejkxk(t ), (1)

where xj(t ) denotes the oscillating quantity of the jth oscillator at time t, the sign±signiˆes
that the oscillator is ptype or ntype, namely, ＋ for ptype and － for ntype, and ejk indi-
cates a connection marking quantity using the integer 1 or 0 like a Kronecker delta, that is,
the integer 1 is given when kth oscillator connects to jth oscillator and the integer 0 for no
connecting oscillator pairs. We note that ejj＝0 for 3regular graph type of networks. The
last term of eq. (1) is the input averaged over the outputs from oscillators connected. It is im-
mediately apparent that,∑

k
ejk＝3, for the networks corresponding to 3regular graphs.

3.1.1 Two layered networks
The oscillatory features of both triangular and square prisms are similar to each other.

The realized oscillatory features are similar to those of the originally designed oscillator (see
ref. 1), but the parameter area becomes lower in value as the network size becomes larger.
The commonly observed features of these kinds of networks are shown in Figs. 3 and Fig. 4.
A special oscillation that is seen in the triangular prism network is shown in Fig. 5. Fig. 6 il-
lustrates an example of chaotic oscillations of the square prism network. The square prism
network behaves like as if P3 is similar to or the same as P1, and N3 is similar to or the same
as N1 as seen from Figs. 4 and 6.

3.1.2 Two Colored Networks
In triangular prim networks that are two-colorable with respect to the oscillator types,

the oscillatory features are similar to those observed in the two layer type of triangular prism
networks, since two-colorable is impossible in this network type. As already stated in section
2, two-colored network property of the triangular prism is frustrated. This fact is seen in Fig.
7, and it predicts that new materials will not appear for triangular prism networks. It is,
however, expected that some small diŠerences can be seen between two layer graph and two
colorable graph types. Such a diŠerence is seen in the state diŠerences of N1 by comparing
Fig. 7 with Fig. 3. Another thing is that disorder is more common in the two-colored net-
works as shown in Fig. 8. The parameters are the same as those in Fig. 5.

In the two colorable graph type of square prism networks, the situation becomes diŠer-
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Fig. 3 Oscillation example for two layered network of active oscillators in triangular prism
The parameters of oscillators are three A1, A2, and A3 to which paired ptype and ntype oscillators
are corresponded, namely, A1 for (P1, N1), A2 for (P2, N2), and A3 for (P3, N3). The used parameter
values are A1＝2.28, A2＝2.3, and A3＝2.2, and initial conditions for oscillator variables x are x1(0)＝
0.4, x2(0)＝0.4, and x3(0)＝0.4.

Fig. 4 Oscillation example for two layered network of active oscillators in square prism
The parameters A1, A2, A3, and A4 are apportioned to ptype and ntype oscillator pairs (P1, N1),
(P2, N2), (P3, N3), and (P4, N4). The A parameters are A1＝1.58, A2＝1.6, A3＝1.62, and A4＝1.5,
and initial condition for variables x are x1(0)＝0.4, x2(0)＝0.4, x3(0)＝0.4, and x4(0)＝0.4.
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Fig. 5 Special oscillation in two layered network of active oscillators in triangular prism
The A parameters are A1＝2.28, A2＝2.3, and A3＝2.9, and initial conditions for variables x are x1(0)
＝0.4, x2(0)＝0.4, and x3(0)＝0.4.

Fig. 6 Chaotic oscillation in two layered network of active oscillators in square prism
The A parameters are A1＝1.58, A2＝1.6, A3＝1.62, and A4＝2.6, and initial condition for variables x
are x1(0)＝0.4, x2(0)＝0.4, x3(0)＝0.4, and x4(0)＝0.4.

―  ―
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ent because the square prism network can complete the coloring with two colors. The square
prism network of two colors behaves well, giving ordered oscillations over a wider parameter
range than other network types. An example of well ordered oscillations is depicted in Fig. 9.
This kind of network shows the well similar oscillations between P1 and P3, and also be-
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Fig. 7 Oscillation example for two colored network of active oscillators in triangular prism
The A parameters and initial conditions for variables x are the same as those in Fig. 3.

Fig. 8 Chaotic oscillation in two colored network of active oscillators in triangular prism
The A parameters and initial conditions for variables x are the same as those in Fig. 5.
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tween N1 and N3. This nature is extended to chaotic oscillations are as shown in Fig. 10.

3.2 Passive Oscillator System

The passive oscillators considered here are described by the following recurrence equa-
tion,
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Fig. 9 Modulated oscillation in two layered network of active oscillators in square prism
The A parameters are A1＝2.18, A2＝2.2, A3＝2.22, and A4＝1.8, and initial condition for variables x
are x1(0)＝0.4, x2(0)＝0.4, x3(0)＝0.4, and x4(0)＝0.4.

Fig. 10 Chaotic oscillation in two colored network of active oscillators in square prism
The A parameters are A1＝2.18, A2＝2.2, A3＝2.22, and A4＝2.6, and initial condition for variables
x are x1(0)＝0.4, x2(0)＝0.4, x3(0)＝0.4, and x4(0)＝0.4.

―  ―
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xj(t＋1)＝±A(I 2
j (t)－1)Ij(t )±Ij(t ) and Ii(t )＝

1

∑
k

ejk
∑

k
ejkxk(t ), (2)

where xj(t ), sign ±, and ejk are the same as those used in eq. (1). Notice again that ejj＝0 for
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Fig. 11 Oscillation example for two layered network of passive oscillators in triangular prism
The A parameters are A1＝2.78, A2＝2.8, and A3＝2.7, and initial condition for variables x are x1(0)
＝0.4, x2(0)＝0.4, and x3(0)＝0.4.
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3regular graph type of networks. As stated in subsection 3.1, 3regular graph type of net-
works yields that∑

k
ejk＝3. As seen in eq. (2), oscillators in a network that are described by

eq. (2), are operated as if the system is controlled through the other oscillators' states. In the
other words, every oscillator in the network is passively governed by those oscillators that are
providing outputs.

These passive oscillator networks show rather gentle oscillatory behaviours compared to
those obtained for active oscillator networks. Nevertheless interesting oscillations are found
in the passive oscillator networks. We can see chaotic oscillations in this kind of network, but
they are not so strongly chaotic as random walk processes [4]. One interesting oscillation
type which can be seen in two layered networks is spindling waves. We present below the
results of oscillations for passive oscillator networks by dividing these into those for two
layered networks and those for two colored networks.

3.2.1 Two Layered Networks
The oscillations in triangular prism networks are often of regular form as seen in Fig.

11, and are similar to each other for the same type oscillators. These oscillations are similar
to those obtained for the isolated nonlinear 1D oscillators used here. The oscillations still
keep regularity on the chaotic region for parameter value of A as shown in Fig. 12. All the
oscillators in each layer realize the same oscillation feature since the deviation of parameter
values for all the oscillators is small. This implies that a synchronous nature appears in
chaotic oscillations with small deviation of parameter values since the oscillation diŠerence is
seen in ntype oscillator layer for regular oscillations.
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Fig. 12 Highly Modulated oscillations for two layered network of passive oscillators in triangular prism
The A parameters are A1＝3.88, A2＝3.9, and A3＝3.92, and initial condition for variables x are x1(0)
＝0.4, x2(0)＝0.4, and x3(0)＝0.4. All the values of A parameters are those in chaotic oscillation
region in an isolated 1D oscillator.

―  ―
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The fundamental behaviour of the oscillations of the square prism networks is quite
similar to that in triangular prism network. The oscillations that are unique to square prism
networks are illustrated here, as they are interest to us. In particular, spindle-like waves were
found in the two layered network of square prism shape. An example is shown in Fig. 13.
These waves are seen from initial stage. The spindle-like wave means that a spindling wave is
modulated on a sinusoidal curve. The period of the sinusoidal curve becomes shorter as the
parameter A becomes higher. This fact can be understood from Fig. 14 by comparing the
ˆgure to the Fig. 13. The alternatively exchanging oscillation modes between ptype and n
type oscillator layers can be seen in the chaotic parameter region. This fact is seen a set
ˆgures from Fig. 15 to Fig. 17.

3.2.2 Two Colored Networks
The oscillations in two colorable graph type networks are quite rigid over a wide range

of the parameter changes. Very similar oscillations to those seen in Fig. 18 for the triangular
prism network and Fig. 19 for the square prism network are almost always observed. Small
changes in shape and amplitude are observed for parameter changes, but the oscillations ob-
tained are quite similar. This network type, being organization of passive oscillators, behaves
like an oscillator as a whole. Thus we guess that the two colorable nature of the network is
not so essential to the oscillation features produced in passive oscillator networks. Instead,
the eŠect of two-colorable nature re‰ects that the oscillation properties of P1 and P3 oscilla-
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Fig. 13 Sinusoidal Spindling-waves
Spindle-like waves are observed in two layered network of passive oscillators in square prism shape.
The observed spindle-like waves are sinusoidal modulations of spindle waves. The A parameters are
A1＝2.78, A2＝2.8, A3＝2.82, and A4＝3.8, and initial condition for variables x are x1(0)＝0.4, x2(0)
＝0.4, x3(0)＝0.4, and x4(0)＝0.4. The length of spindle wave becomes shorter for the A4 parameter
becomes higher. These spindle-like waves are stable and continuing from the initial stage.

Fig. 14 Parameter dependence of sinusoidal period of the sinusoidal spindling-wave
Only the A4 parameter is increased to a high value, A4＝4.5. All the other parameters are the same as
those in Fig. 13.
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Fig. 15 Alternate oscillation modes between p-type and n-type oscillator layers (part I)
The A parameters are A1＝3.78, A2＝3.8, A3＝3.82, and A4＝4.6, and initial condition for variables
x are x1(0)＝0.4, x2(0)＝0.4, x3(0)＝0.4, and x4(0)＝0.4. Usual oscillation modes can be seen in this
time range (iteration time from 500 to 580).

Fig. 16 Alternate oscillation modes between p-type and n-type oscillator layers (part II)
Oscillation modes are swapped in the iteration time from 620 to 700. The ˆgures are later iteration
time of oscillations for those in Fig. 15.

―  ―
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Fig. 17 Alternate oscillation modes between p-type and n-type oscillator layers (part III)
An example of alternation area of oscillation modes swapping is shown. All the parameters are the
same as those in Fig. 15. The example shows that the oscillation modes return to usual modes.

Fig. 18 Typical oscillation in two colored network of passive oscillators in triangular prism
The A parameters are A1＝2.78, A2＝2.8, and A3＝2.7, and initial condition for variables x are x1(0)
＝0.4, x2(0)＝0.4, and x3(0)＝0.4. The A parameters and initial condition for variables x are the same
as those in Fig. 11.
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Fig. 19 Typical oscillation in two colored network of passive oscillators in square prism
The A parameters are A1＝2.78, A2＝2.8, A3＝2.82, and A4＝3.8, and initial condition for variables
x are x1(0)＝0.4, x2(0)＝0.4, x3(0)＝0.4, and x4(0)＝0.4. The A parameters and initial condition for
variables x are the same as those in Fig. 11 where spindle waves can be observed in two layered net-
works of passive oscillators.
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tors and those of N1and N2 oscillators are the same or very similar to each other in the
square prism network.

4. Discussions

The oscillator networks studied in the present paper are expressed as the regular graph
of order three. Thus we can call the networks considered here 3regular graph type networks.
The image for of the real structure corresponding to the 3regular graph type network is a
polygon prism, namely, having oscillators are located at corners and sides (or edges) im-
plying connection lines. The polygon prism structure supplies the application of 3regular
graph type networks for real materials or organisms.

An application is neuronally controlled behaviour of Jellyˆsh [5, 6]. The behaviour of
Jellyˆsh is simple, that is, drifting or swimming in the sea. The neuronal structure of
cubomedusae and hydromedusae might be reduced to a four sided polygon prism network. It
is so far unknown why all these medusae have 4fold symmetry to their major neural net-
work elements. Usually neurons can be classiˆed into two groups, i.e., excitatory neurons
and inhibitory neurons so that the nonlinear 1D oscillators used in this study are applicable
to a modeling study of a real organism. In the oscillator model for a Jellyˆsh, changes of os-
cillation modes imply the swimming motion or behaviour switching. The spindle-like waves



―  ――  ―

Memoirs of the Kokushikan Univ. Center for Information Science. No. 26 (2005)

that appeared in two layered networks consisting of passive oscillators (Fig. 13 and 14) can
perhaps be assigned to swimming modes of Jellyˆsh. The two layered network is appropriate
to the real neuronal network of Jellyˆsh. We speculate that if any side of Jellyˆsh pushed,
the parameter of pushed side oscillators becomes high and then oscillation mode goes to
spindle-like waves. Our simulations assert that the push to any side causes spindle-like wave
oscillation in all network elements.

Another application is the oscillations of atoms in a crystal lattice. Simple crystals have
unit cells that are square prisms or cubes. That is the atoms of a simple crystal are located at
the cross points of a lattice so that the unit cell is a square prism. Usually the interaction be-
tween neighbouring atoms is an additive term to the Hamiltonian of an isolated atom. Thus
the network consisting of active oscillators is appropriate to making a model for such kinds
of systems having output-input relations that are of the additive type. The thermal nature of
crystal can be explained by n oscillator systems so that local thermal ‰uctuations can be mo-
deled with such kind of oscillator networks.

Actually larger size systems are existed in real world. The general features of oscillations
in two layered networks and two colored networks will be applicable in much larger networks
than those examined in the present paper. It is general that oscillations of networks are simi-
lar to those observed at isolated active oscillators in the two layered networks consisting of
active oscillators, except for the parameter values are lower than isolated ones. The feature
found in two colored networks consisting of passive oscillators is general, that is, the oscilla-
tion of each oscillator is quite similar to each other for wide parameter range, and thus this
type of networks can be regarded as an giant oscillator acting as a whole, as stated above.
The two-colorable property of networks is not so characteristic. This property may produce
pairing of oscillators for oscillation modes, but this point is not clear because we examined
only square prism networks.
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