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Synopsis: The boiling and critical temperatures of chlorofiuorocarbons (CFCs) reduced from methane
respectively fit on two parabolic curves with respect to the total dipole moment, where total dipole moment
equals the addition of the permanent electric dipole moment and the induced electric dipole moment. This
fact is clear and also confirmed for CFCs reduced from ethane. A theoretical description is also given for
the traditional statistical mechanics procedures, since boiling and critical temperatures are macroscopic,
while permanent dipole moment and porlizability of a single molecule concerned with induced dipole mo-
ment are microscopic. The simple way to provide the equation of state of the so-called van der Waals type
is described. The modified van der Waals equation changed from the van der Waals’ one is proposed to
realize a value of ratio P.V,./T, close to the experimental one. The requirement to fit on a parabola is that
the ratio of configuration integration against the effective volume of an atom must take the same value in a
group of CFCs.

Key words: Chlorofluorocarbons, Boiling Temperature, Dipole-Dipole Ineraction, van der Waals
Equation.

1. Introduction

We found that the boiling temperatures of a subgroup of chrolofluorocarbons (CFCs)
reduced from methane fit on a parabolic curve against the electric dipole moment as shown in
Fig. 1, where electric dipole moment is defined as the total dipole moment composed of per-
manent and induced dipole moments. In Fig. 1, the boiling temperatures are depicted against
the square values of total dipole moments to see the clear relationship. This fact is also con-
firmed for other reduced methane and ethane CFCs (hereinafter, reduced methane and
ethane CFCs are called methane-CFCs and ethane-CFCs, respectively, and if required, the
expressions CH,F,Cl, ., for methane-CFCs and C,H,F,Cls.,, for ethane-CFCs will be
used). The group of methane- and ethane-CFCs shows the square dependence of boiling tem-
perature on dipole moment, while the group of rare gases does not exhibit the same feature.
The boiling temperatures of the rare gases do not fit on a parabolic curve. We also confirmed
that critical temperatures versus total dipole moments of methane-CFCs fit on two types of
parabolic curves, and those of a group of ethane-CFCs stand on a parabola. The details are
shown in section 2.

In the field of intermolecular forces, it is well known that dominant interaction is a
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Fig. 1 Relationship between Boiling Temperature and Total Dipole Moment for Methane-CFCs
Boiling temperatures of Methane-CFCs (Chloroftuorocarbons reduced from methane) are proportion-
al to the square value of total dipole moment. In other words, boiling temperatures stand on a parabo-
la against the total dipole moment.

dipole-dipole interaction or a dispersion force within a system of electrically neutral
molecules!2. However, this well-known fact does not immediately mean that boiling and
critical temperatures in a group of molecule types depend on the square value of total dipole
moment. It is possible to predict some conditions for the square dependence. To see the con-
ditions to realize the fact considered here, we undertake the theoretical derivation of the
relationships between boiling or critical temperature and total electric dipole moment. Con-
sidering the derivation process, we focus on the fact that boiling and critical temperatures are
macroscopic thermodynamical quantities, whereas permanent and induced dipole moments
of a molecule are microscopic quantum-chemistrical quantities. The quantities for binding to
each other lie on quite different stages. Hence, we use the traditional method of statistical
mechanics®* to derive the targeted relationships.

We use a semi-classical procedure to derive the relationships. We start from the quan-
tum mechanical treatment of Hamiltonian, which describes the two interacting molecules.
For this treatment, we expect that the Hamiltonian yields interaction energy from any pair of
interacting molecules. We assume that the interaction energy given by quantum Hamiltonian
is equivalent to the potential term of classical Hamiltonian. We therefore derive the targeted
relationships in the statistical mechanics framework by using classical Hamiltonian. We
demonstrate the derivation of the relationship that boiling and critical temperatures are
proportional to the square value of the electric dipole moment. In the derivation, we assume
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that molecule movements satisfy the ergodicity, and each molecule describes a typical move-
ment expressed by a statistical average within certain deviations. Based on these assump-
tions, we can derive a van der Waals-type equation of state. Applying critical conditions to
the equation of state, the relationship between critical temperature and electric dipole mo-
ment can be obtained. We also obtain the critical pressure and volume for the critical condi-
tions. The relationship between boiling temperature and electric dipole moment is also ob-
tained by use of Maxwell’s criterion to determine the phase transition from gas to liquid or
reverse the transition on the equation of state. The derivations are shown in section 3.

Using the derived equations expressing the relationship between boiling or critical tem-
perature and dipole moment, we discuss in which cases do boiling and critical temperatures
fit on a parabolic curve against the total dipole moment. Only taking dipole-dipole interac-
tion into account we obtain the expression of critical temperature versus dipole moment.
This allows zero temperature when the dipole moment approaches to zero, but differs from
the evidence shown in section 2. The difference will be overcome by taking higher order inter-
actions such as quadrapole-quadrapole interactions or more higher into account, because
dipole-dipole interaction is the first order approximation for electrically neutral molecules.
No higher order interactions affect the derivation of the relationship between critical temper-
ature and dipole moment.

Moreover, we require the modification of the van der Waals equation of state, since it
gives different values for the ratio P.V./T, from that given by the experimental values. We
therefore introduce the modified van der Waals equation of state, which has the fractional
volume V2*7. We call y introduced fractional volume factor. The fractional volume factor
gives a better value of ratio P.V,/ T, close to the experimental one at y = 1/4. These issues are
discussed in section 4.

2. Evidence for the Square Dependence of Boiling and Critical Tempera-
tures on Total Electric Dipole Moment

In the previous section, we stated that the relationship between boiling temperatures and
total dipole moments from a subgroup of methane-CFCs forms a parabola as shown in Fig.
1, namely, the boiling temperature is proportional to the square value of total electric dipole
moment in a subgroup of methane-CFCs. This is true for methane- and ethane-CFCs, and
the same relationship can be established by replacing boiling temperature to critical tempera-
ture. It does not however mean that all the boiling and critical temperatures of CFCs lie on
the same parabola. We make a set of CFCs, of which temperatures lie on the same parabola,
as a group. Methane-CFCs are classified into two groups, because their boiling and critical
temperatures fit on two separable parabolas with respect to the total dipole moment. This im-
plies that some conditions exist to fit on the same parabola even if dipole-dipole interactions
are dominant in electrically neutral molecules.

The physical properties of methane-CFCs are listed in Table 1. The permanent dipole
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Table 1
molecule Ko a Te T. P, V., PcVe/Te
CHxFyCl,~x-y [au.] [au.] [K] K] [atm] [em®/mol] [atm=cm’/mol/K]
group A
CHA4(50) 0.000 16.572 1116 1904 454 99.2 23.7
CHF3(23) 0818 16.500 191.0 299.3 480 132.7 213
CHCIF2(22) 0.666 30.742 2324 3693 490 165.6 220
CHCI2F(21) 0.549 44220 282.1 4516 51.1 196.4 22.2
CHCI3(20) 0.454 56.669 3343 536.4 53.0 239.0 236
group B
CF4(04) 0.000 16.113 145.1 2276 369 139.6 226
CCIF3(03) 0.232 30371 193.2 302.0 38.2 180.4 228
CH3F(31) 0.636 16.926 194.7 3150 553 113.2 19.9
CH2F2(22) 0.803 16.883 2215 3516 5715 1208 198
CCI2F2(02) 0.143 45.045 2452 3849 409 216.7 23.0
CH3CI(30) 0.595 28.808 2494 4163 66.1 139.0 22.1
CH3CIF(21) 0.703 30.089 264.0 426.6 55.5 158.0 206
CCI3F(01) 0.079 58.933 296.9 471.2 435 2478 229
CH2CI12(20) 0591 42271 313.0 510.0 62.2 193.0 235
CCl4(00) 0.000 71.664 349.9 556.4 45.0 2759 22.3
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Fig. 2 Relationship between Boiling and Critical Temperatures and Permanent Dipole Moment for Methane-
CFCs. A clear relationship similar to Fig. 1 cannot be found. Some types of Methane-CFCs may exist.

The numbers in the figure signify (xy)s expressed in ther form of CH.F,Cly .

moments y, and polarizabilities ¢ in Table I are calculated by using the MOPAC program’.
Boiling and critical temperatures (7, and T,), critical pressure P,, and critical volume V., of
experimental values were surveyed using several data books®'2 and papers!*~'°. We also show
the ratios P.V./T., which are referred and discussed in §4. As already mentioned above,
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Fig. 3 Relationship between Boiling and Critical Temperatures and Electric Porlizability for Methane-CFCs
This figure cannot be found in the clear relationship shown in Fig. 1. Some types of Methane-CFCS
may exist, but the meaning of this remains unknown. The numbers in the figure are the same significa-
tion as explained in Fig. 2.

methane-CFCs separate into two groups. We simply call these two groups group A and
group B.

Figure 2 shows the relationship between uy and (T}, or T,) for methane-CFCs. Figure 3
shows the relationship between « and (7, or T,.). Although these figures probably have a
meaning, we cannot find clear relationship between yy,— (7} or T.) and o~ (7} or T,), respec-
tively. In Fig. 4, we are able to show a clear relationship between total electric dipole moment
o+ e, and boiling or critical temperatures (7, or 7). Notice that e means induced dipole
moment. Since « is the porlizability of an atom, ¢ implies the electric field caused by atoms
surrounded the considered atom. As seen from Fig. 4, the relationship between (7}, or 7,)
and o+ €a, obviously show parabolic features, and both Tys and Ts, respectively, lie well
on different two parabolic curves. Figure 4 asserts that there are two classification groups for
the methane-CFCs.

To observe evidence of square dependence of boiling and critical temperatures influenc-
ing total dipole moment, we plot T,s and 7T,s against (1, + ea)®s. The results are shown in Fig.
5. On the plots in Fig. 5, a straight line means an exact parabola. As seen in Fig. 5, both
members of groups A and B lie on the respective straight lines quite well.

We confirmed that the same relationship is also maintained for ethane-CFCs. We select-
ed a class of boiling and critical temperatures of ethane-CFCs from the references®!? for the
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Fig. 4 Palabolic Expression for Dependence of Boiling and Critical Temperatures on the Total of Electric Di-
pole Moments. The relationship between boiling and critical temperarures and total electric dipole mo-

ment is shown. An obvious relationship is visuable in the figure. The numbers in the figure are the same
signification as explained in Fig. 2.

criterion in which experimental values given by different references agree with each other.
The selected ethane-CFCs are listed in Table 11 with permanent dipole moments, polarizabili-
ties, boiling temperatures, and critical temperatures. The relationship between boiling tem-
perature and total dipole moment can be accommodated by the parabola expressed in the e-
quation 7, = 13.423- (up+ ea)* + 175.32 with deviating errors within 5%. Figure 6 shows the
plotted picture of the relationship T,s versus (4 + ex)’s. We can see that boiling temperatures
for ethane-CFCs are also proportional to their square values of total dipole moment.

Here, we notice that the permanent dipole moment and the polarizability of a molecule
used in the present paper are microscopic quantities given by the calculation of the molecular
orbital method (actual calculations were performed by the program MOPACS> and some
parameters for atomic properties?® were used), while the boiling and critical temperatures are
macroscopic quantities measured by experiments®°. In other words, microscopic interac-
tions of molecules appear in the macroscopic quantities which were observed in the ex-
perimental measurements.

As the result, we knew that dipole-dipole interaction or dispersion force!? (dominant in-
teraction of electrically neutral molecules) is reflected in the boiling and critical temperatures.
These facts are expected in any system of usual molecules, but actually are not general. A
noteworthy point is that a group of molecular types has proportional dependence on the
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Fig. 5 Proportional Dependence of Boiling and Critical Temperatures on the Square Value of Total Electric
Dipole Moment. This figure demonstrates that boiling and critical temperatures fit well on parabolic
curves quite well. From the figure, we can see that Methane-CFCs are classified into two groups. These
are simply named group A and group B. The numbers in the figure are the same signification as ex-
plained in Fig. 2.

Table 11
molecule Ho o Tb Te error

C,HxFyCl4-x—y [a.u] [a.u] (calc.) (exp.) (%]

CF3CF3 0000 31.133 197.58 194.95 1.35
CF2CICF3 0219 45517 234.62 234.45 0.07
CHF2CF3 0.839 30.939 235.58 224.65 4.87
CH3CHF2 0.983 29.482 240.43 249.15 -3.50
CF2CICF2Cl 0.226 59.495 272.24 276.95 -1.70
CHF2CHFCI 1.026  44.089 284.33 290.15 -2.01
CF2CICHFCI 0.689 58.163 303.91 301.25 0.88
CFCI2CF2Cl 0.257 72.572 317.88 320.75 -0.90
CFCI2CHFCI 0.640 72471 352.95 345.65 2.11
CFCI2CFCI2 0.174  86.468 364.18 365.75 -0.43

square value of total dipole moment (u, + ec)?. Presently, we see this fact for CFCs only. The
rare gases do not satisfy the relationship considered here. Taking rare gases into considera-
tion, we speculate that each type of CFCs may be similar in shape to each other, because the
CFCs discussed here are reduced from the fundamental molecules CH, or C;Hg by replacing
hydrogen (H) with fluorine (F) or chlorine (Cl). We mention again that the methane-CFCs
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Fig. 6 Relationship between Boiling Temperature and Total Electric Dipole Moment for Ethane-CFCs
Boiling temperatures of ethane-CFCs also lie on a parabola against the total electric dipole moment.
These ethane-CFCs are selected as they correspond to experimental data from different references.

are classified into two subgroups. The particularity of group A is speculated as follows: every
member of group A has a C—H bond and other bonds of a carbon are F or Cl except for
methane itself.

Molecular types methane CH,, tetrafluoromethane CF,, and tetrachloromethane CCl,
are nonpolar (see Table 1), namely, these molecules have no permanent electric dipole mo-
ment. Other methane-CFCs have permanent electric dipole moments, respectively. This may
be caused by an unbalanced molecular binding of F, Cl, and H to a central carbon atom. The
larger permanent dipole moment comes with the combination of F and H atoms, as seen in
table I. We also see in table I that the larger polarizability is caused by Cl atoms.

Hence, we briefly see that the asymmetricity of a molecule results in the permanent elec-
tric dipole moment and the increase of electrons in an atom controls the polarizability of a
molecule. These rough views are inferior to the evidence shown in this section, namely, the
relationship of boiling and critical temperatures versus total dipole moment which form the
four parabolas. We clearly understood the square dependence of boiling and critical temper-
atures on total dipole moment for methane- and ethane-CFCs.

3. Theoretical Description of the Relationship between Boiling and Critical
Temperatures and Electric Dipole Moment

In the present section, we derive the relationship between boiling or critical temperatures
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and electric dipole moment for the system where electrically neutral molecules are interacting
with each other. We assume that the interaction between any two molecules is expressed by
coulomb potential. The derivation scheme follows:

Let’s consider a N molecule system where every molecule is electrically neutral and
molecules interact with each other with coulomb interaction. The derivation is carried out
under the assumptions that each molecule does not lose any electrons and that no electron ex-
change occurs during the interactions. We first consider the interaction energy between two
molecules from the quantum chemistry viewpoint, because the calculation of permanent
electric dipole moment and electric polarizability of a molecule was undertaken on the
MOPAC program®. The obtained interaction energy is regarded as the interaction energy be-
tween any two molecules that are electrically neutral. We can treat the system described by
quantum mechanics as a classical particle system where the interaction energy between any
two particles is equal to that given by quantum expectation values. Regarding this point, we
replace the quantum Hamiltonian of N particles system with the classical one. Using the clas-
sical Hamiltonian, we construct the partition function for the statistical ensemble of the sys-
tem considered. Then the thermodynamical free energy of the system is given by a partition
function using the well-known relationship in statistical mechanics?#. Moreover, an equation
of state is obtained from the free energy, using the thermodynamical relationship that the
pressure of a system is the negative partial derivative of free energy with respect to the tem-
perature, with the volume remaining constant?!, Finally, we obtain the set of equations for
critical temperature, pressure, and volume, applying the critical condition that the first
derivative of pressure for volume and the second derivative of that are equal to zero at the
same time!8. We also obtain the relationship between boiling temperature and interaction
energy of molecules by using Maxwell’s criterion for the change of substance phases?!.

3.1 Interaction Energy between Two Molecules

We consider the following Hamiltonian operator to describe two interacting molecules
A and B at the atomic level.

H=H,+Hz+V,, 3.1
~ 1 4
Hy= -2 W +2 = 3.2
4 2 i (V ;rA1> l§l riy ( )
S 5Zy\ | E 1
Hy=-—3% (W-Z—E)JrZw (3.3)
27 fBj /= i
B A Z A B A B 1 A B
EZf—ZZ +ZZ ,ic A, je B (3.4)

i

where V,,, is energy for intermolecular interaction, H, and Hy are intramolecule Hamiltoni-
an operators of respective molecules A and B, suffices i, j denote electrons of each molecule (i
for molecule A, j for molecule B), and suffices a, b denote nuclear of each molecule (a:
molecule A, b: molecule B), Z, and Z,, signify the nuclear charges of the respective molecules
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Fig. 7 Illustrated Scheme of Two Interacting Molecules
Molecules are simply expressed as A and B. Vectors to describe the relative positions of atoms are
depicted briefly.

A and B. The scheme of interacting molecules A and B is briefly illustrated in Fig. 7. The
lapiacian terms of Hamiltonians H4 and Hjp correspond to classical kinetic energies of molec-
ules A and B. We assume that the system is stationary, so that the Hamiltonian H 4z satisfies
the time independent Schrodinger equation, i.e.,

Haplwap=Ha+ Hp+ Vi)l Was=(EL+EL + En) | Was 3.5)

where | )45 denotes a stationary wavefunction, £ and E, are intramolecular energies of
molecules A and B, and E;, is the energy of intermolecular interaction.

For the system of electrically neutral molecules, the potential of two interacting molec-
ules A and B can be approximated by the perturbation method up to the second order
terms!2. The approximate potential of interaction V3, becomes

1 — - o
Vine= Vifuz “‘;’3 {3(6/13‘/«5,4)(&15';&!3)“#4 '!13} (3.6)

where ezg denotes the unit vector describing the direction along the line between respective
electrical centers of molecules A and B, which are given by following equations

10
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- 1 & _ — A - 1 8 . B

rA:MZZ(IrayNA:ZZa, rB:——-'ZZ,,r,,,NB:ZZb (37)
NA a a NB b b

- 1 — T, B R

eAB:TrAB, F=1{rapl,Tap=Frg— T4 (3.8)

and u 4, up are operators of electric dipole moments for molecules A and B defined as fol-
lows:

A A B B
ﬁA :Z Za(;'a - ;‘/1)‘-2 (;l - ?/1)9 :aB :Z Zb(?b - FB) _Z (F/ - ?B) (3'9)
a i b J

Notice that we use the atomic unit h=1, c=1 and e= 1. The expectation values of dipole mo-
ment operators are iy, Ug, respectively.
Therefore, the approximate expression for interaction energy is as follows:

En= 4l Vil doap=f(r)iia lip (3.10)

where we generally put the dependence of the distance r between two molecules A and Bby a
certain function f{r), since the molecular interaction of electrically neutral molecules has the
r % dependence and a higher order of correction terms!2. For homo-molecules, the inter-
molecular interaction energy is given by eq. (3.10) with A = B, namely, using the same expec-
tation value u4 = ug=u, the classical form of approximate interaction energy is written as

En=f(ru’ 3.11)

where ¢ means the total electric dipole moment. By following Margenau and Kestner!, sym-
metric molecules have only dispersion force, i.e., induced dipolemoment, while asymmetric
molecules have a constant independent polarizability, which corresponds to the permanent
dipole moment.

3.2 Derivation of an Equation of State

In this subsection, we derive an equation of state that yields the relationship between
boiling or critical temperatue of a system and intermolecular interaction. We assume that
electrically neutral molecules of the same types interact weakly with each other and they are
in thermal equilibrium. Following the derivation scheme mentioned above, we introduce the
classical Hamiltonian written as

2
H=;2£,';;+}i:ef°+ §‘¢(rfj)52fﬂ+§j¢(rf,) (3.12)

where p; denotes the momentum of the i-th molecule, 7 is the mass of a molecule, &;° the
energy of intramolucule interactions of the i-th molecule, and ¢(r;;) the energy of inter-
molecular interaction for the i-th and j-th molecules, respectively. The energy of inter-
molecular interaction is assumed to be given as eq. (3.11) so that ¢(r;;) has the following ap-

11
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proximate expression
S(ri) =f (riu’. (3.13)

The partition function Z for the N molecules system is given by

1 1 H
Z:m WS . S exp {—m} dx, dy, dz, --dp.. dp,. dp-.

2 k T 3IN/2
= (7"2—23) AT, V) (3.14)

where 4 denotes Plank’s constant, kz Boltzmann’s constant, 7 the absolute temperature of
the system, and €(7, V) is defined as follows:

1 lij + 8,0
T, V):-]\FS‘S €Xp {—;‘?‘(/;Z—TZ*—} dx, dy, dz1“~dedyN dzn

_ 1 & S g 2 d(ry)
—Mexp{—k—B?} ] eXp _W dxldyldZI"'dedyNdZN

1 N80 Fii
=—exp {_;ﬁ"} SE exp {—%} dx, dy, dzy —-dxydyndzn  (3.15)

where the last expression is obtained on the assumption that intramolecular energy is in-
dependent of a molecule’s position and takes the same value &° for each molecule.

Now, we estimate the energy of intermolecular interactions X¢(r;;). We assume that a
certain kind of ergodicity is satisfied for molecule movements, and also that a equilibrium
distribution p(x) of molecules exists. Hence, we can obtain the mean energy of intermolecu-
lar interaction which is independent of a molecule’s positions as follows:

2 i) =2 o(IFi—Fl)

i>j i>j

ZSS dxdy Y, o(|x=p)6(x—r)é(y—1))

=§E dx dyo(1x—-7!) Z, {o(x—F)o(7—F)}

2 || drasoqe-sn {Eijd(x—f,v);5@*%)—;5(2—%)5(?—7;)}

=L {| aeasoe—r Do)

”‘%H dx dye(1 %=y p(X)p(7) (3.16)

where 8(---) denotes Dirac’s delta function, p(---) means the density distribution of molec-
ules, and p* signifies the conditional density distribution with the correction by summing up
the pairs. The procedure to use the delta-measures, which converges at some kind of distribu-

J— 127
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tion density, follows chaos study?? and random matrix theory?. Using the above estimation
for the energy of intermolecular interactions, we can remove the energy of intermolecular in-
teractions independently from the phase space integration. Then we obtain the following ap-
proximation of (7, V), namely,

Ne°

1
T, V)QNT exp <’*7(;§,) SS dx, dy, dzi-dxy dyn dzn

.
X exp {mszT” dx dﬁ¢>(b‘c—)7%)p()?),0(ﬁ)}

(V—=Nv)N Ne® 1 o
= &P (—ﬁ) exp {MszT“ dxdyq&(ix—yi)p(X)p(y)} (3.17)

where V denotes the total volume of the system and v equates to the effective volume giving
rise so that every molecule can approach closely to other molecules within a certain distance.

We, therefore, make a further assumption about uniform density distribution for
molecules, namely,

N
p(x):p(y)ﬁ*; (3.18)

the following calculations are performed by using not only coordinates with transformation
of shift and those from Descartesian to polar one, but also the approximate form of inter-
molecular interaction (3.13).

T, V)~(VN1:B)N exp 8;_) exp { ZkBT']Ii;SS d‘d'é(if*ﬂ)}
(V N[!W) exp ( ;) exp {mmz\g\" 4nrg(r) dr
_¥ N];h)) ( Ngg) exp {~m%g Anrif (ru* d }
v N[;Jv) . {NzUZfBTi’VNg } (3.19)
where U, is defined as the following integration,
U= —S drr’f(r) dr. (3.20)

The reason for a negative definition is to express the fact that the energy of intermolecular in-
teraction is negative. The result (3.19) yields the following approximation of partition func-
tion Z for the system considered.

- (2nmk3 T)W2 (V—Nv)¥ {N2U0u2 —2Ng® V}
= ex

s N! 2k TV 321
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Using the thermodynamical relationship between the free energy of a system and partition
function®4, we obtain Helmholtz’s free energy F, i.e.,

F=—ksTlnZ
2amks T\ > (V= Nv)" N2Uop? = 2NV
~—ksT1 ——
sTn { ( 7 ) n© 2ks TV
3N [2nmksT N*Uop? = 2Ne'V
S EAS + V—Nv)—In N} + 3.22
/q:r{2 In( 2 ) {NIn (V~Nv)—In N!} STV (3.22)

We therefore give the van der Waals equation of state by use of the thermodynamical
relationship?! p= —(§F/3V)r by applying the free energy in (3.22), i.e.,

__(gg) g [N N
P av): TPl v—nNv ZkBTVZJ

___nRT  (nN,)'Usl
V—nNyv 212

(3.23)

where P denotes the pressure of the system, R= kN, the gas constant, n1=N/N, the molar
number, respectively. As seen in the above derivation of van der Waals equation of state, we
know that the van der Waals equation of state describes the mean field interaction for
uniformly distributed molecules.

3.3 Critical Temperature and Boiling Temperature

Critical Temperature

The relationship between critical temperature and the energy of intermolecular interac-
tions is obtained by applying the critical condition?' to the van der Waals equation of state
(3.23). The critical condition of the equation of state is given by the following two partial

derivatives with respect to volume ¥, namely,

aP a’P ;
) = ] = 2
<6V>;r 0 and <6V2)T 0 (3.24)

After some calculations, critical temperature T, critical pressure P. and critical volume V,
are obtained as follows:

_ AN, Uy

. 2
27Rv ¥ 3.25)
_ Us 2

Pe=g s H (3.26)

V.=3nN4v (3.27)

As seen from eq. (3.29), it is obvious that critical temperature depends on the square value of
the permanent dipole moment g. But this does not mean that critical temperatures in a group
of molecule types fit on a parabolic curve with respect to total dipole moment. We also see

14 -
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that the eq. (3.25) becomes zero when dipole moment approaches zero. This is different from
the evidence shown in §2. This difference is discussed in the next section and will be explained
in the correction of higher order terms as an approximation for intermolecular interaction.

Boiling Temperarure
The relationship between boiling temperature and the energy of molecular interaction is

obtained by applying Maxwell’s criterion?' on phase transition to the above equation of state
(3.23). Maxwell’s criterion on phase transition for the equation of state is illustrated in Fig.
8. Maxwell’s criterion becomes the following integral relation, i.e.,

i (P-P)yaV (3.28)

vy,

Vi
X (P,—P)dV=
v,

where P, is a given pressure, V; the volume of the liquid phase, V, the volume of gas phase,
V,, the volume at the middle point crossing the flat line P,, which is not realized. The result-
ing boiling temperature is as follows:

[1-3)

VQ
V,—nNAv
Vi—nNAv

sz

{ 4 tNAY Uolt } (3.29)

2V
nR log !

As seen from eq. (3.29), the boiling temperature also depends on the square value of total di-
pole moment, 42, It is expected that the volume of liquid state V; is proportional to the effec-
tive volume v. If we take the relationship between V; and v, written as V,=o(nN,v) with a
certain type of proportional constant g, and the ratio of volume of gas state over that of lig-
uid state expressed by

n="V,/V, then we can rewrite eq. (3.29) as follows:

(5)

{na-—l
log | ——

T =
v nR 2Raov

{P"VuN"U‘)’“‘L}. (3.30)
o—1 }

The eq. (3.30) for boiling temperature 7, takes non-zero values at the zero dipole moment.
The rewritten equation (3.30) is much easier than eq. (3.29) for comparing the relationship
between boiling temperature and dipole moment with that between critical temperature and
dipole moment. The term P,V,/nR in eq. (3.30) signifies the temperature for ideal gas with
volume ¥, and pressure P,.

4. Discussion
It is usual to expect that boiling and critical temperatures are governed by microscopic

- 15
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Fig. 8 Schematic Illustration of P-V Diagram.
A boiling temperature is obtained if the P~V diagram satisfies Maxwell’s criterion, which means the

occurrence of phase transition at the line given by the condition where areas S, and Sz are equal,
namely, S, =Sp.

intermolecular interactions. As already recognized, the dominant interaction of electrically
neutral molecules is the dipole-dipole type!2. This expectation does not imply that any
molecular types lie on a curve with respect to electric dipole moment, as mentioned in the
previous section. As seen in egs. (3.25) and (3.30), they have the parameters U, and v, which
are peculiar to molecular types. These equations include the parameters as a ratio Up/v.
Hence, the condition to realize the evidence that boiling and critical temperatures fit on
respective parabolas with respect to the total dipole moment is that a group of molecule types
has the same ratio value Uy/v. The parameter U, is the integration of f{(r) as shown in eq.
(3.20). If the function f(r) is the constant fp, then U, will be given as Uy= — fy(47r3/3), which
is a sphere volume multiplied by the constant — f,. We interpret the parameter U, as the con-
figuration integration over the space where another dipole is included. In actual molecule sys-
tems, every dipole takes an arbitrary orientation in the space so that the interaction energy
changes with the orientation of each dipole. If we select any pair of interacting two dipoles,
the pairs take different orientations. The function f(r) implies that the effect of different
orientations projects an effective value or an averaged value when any pair of dipoles takes
the distance r. Therefore, ratio Uy/v means the value of distortion effect by dipole-dipole in-

— 16 -
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teraction compared with the effective volume by packing of the non-interacting molecules.

We consider that the theoretical critical temperature has the difficulty of recording a
zero temperature at the zero dipole moment. The evidence shown in section 2 requires a finite
temperature at the zero dipole moment. We avoid this difficulty by taking into account
higher order terms of intermolecular interaction energies in the approximation. We express
the higher order terms of intermolecular interactions than dipole-dipole interaction as g(r)e™*
in the polar coordinates and multiplied form of polar distance function and another electric
factor £*, so that the potential of intermolecular interaction between two molecules is given
by the following expression in the polar coordinates, i.e.,

o(r)=g(r)e* +f(ru’ (4.1
Then the equation of state is as follows:

nRT (MN)H{Gog™ + Upti?}

P= 4.2
(V—=nN4v) 212 “.2)

where G is defined by the following integration for g(r), i.e.,
Go= —\ 4nrig(r) dr. (4.3)

The reason for a negative definition is that interaction potential between molecules takes a
certain negative value in the equilibrium. By applying critical condition (3.24) toeq. (4.2), a
modified critical temperature and critical pressure are obtained while the critical volume is
unchanged, namely,

4NA GQ % 41\\[,4 UO 2
L= + , 4.4
277Ry © " 2Ry M (4-4)
Gy, . U
+ —_—
542 gt
V.=3nN,v. (4.6)

P.= 2 4.5)

Therefore, it is apparent in eq. (4.4) that (4N,Gy/27Rv)e* is the temperature at zero dipole
moment and (4N,U,/27Rv) is the gradient of a straight line in the plot of temperature versus
square value of dipole moment. In Fig. 5, we can obtain the ratio (Gy/ Up)e™ which is (4N,Gy
/27Rv)e* divided by (4N,U,/27Rv), namely, 2.32 [a.u.] for group A and 1.89 [a.u.] for
group B.

This correction of the energy of intermolecular interaction also causes the modification
of the expression for boiling temperature. The result is as follows:
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(-3
&

T,= 4.7
b nR 2Rov @7

log

{Pa Vg G{)£*+NAU()U2}

This result can explain the fact that two different parabolas exist, because P,V,/nR is in-
dependent from the molecular types while the term Goe*/(2Rov) depends on the molecular
types. The evidence presented in this paper lets us assert that the ratio Gye*/ov takes the
same value in the same group. This implies some particularity of CFC molecules.

Finally, we discuss the necessity to modify the van der Waals equation of state (3.23) or
(4.2). Ratio P.V,./T, appears in the Table 1. The ratio P.V,/T, given by egs. (3.23) or (4.2) is
the same value (3/8)nR since gases satisfy the equation of state for ideal gas, i.e., PV, =
(3/8)nRT.. The values in Table I are for one-molar gases. If the CFC gases satisfy the van der
Waals equation of state, the ratio P.V./T, is 3/8R=30.8[atm cm?3/mol- K] for one-molar
gases. This value is roughly 50% greater than that obtained from experimental values. The
actual value of ratio P.V./T, is 22.15[atm-cm3/mol- K] averaged over the Table 1 values.

There are a number of equation of state types>»25. But these equations of state do not
give a simple equation for critical temperature. We therefore use the modified van der Waals
equation of state, which has a fractional power for volume because it provides a simple form
of the expression for the critical temperature.

For this purpose, we consider the term given by eq. (3.16), i.e.,

|| ax stz 7o) 49

where we omit the constant 1/2 for simplicity. In eq. (4.8), the transformation of coordinates
gives the volume factor V. Then the uniform density for distribution of molecules gives the
factor N2/ V. It may be that the molecular distribution depends on intermolecule interac-
tions. We can therefore expect that the density of molecular distribution to be lower than
uniform case. We take this expectation for a volume with a fractional factor of power. In
this situation, we assume that eq. (4.8) can be rewritten in the following form of polar coor-
dinates, namely,

2

N
SS dx dyp(1x—yp(X)p(¥) =4 V"‘?’S drrie(r) dr, 4.9

where 1 is a constant to adjust the dimension of physical quantities caused by the introduc-
tion of the fractional factor y for the volume. This modification yields the following equation
of state, i.e.,

nRT Goe* + Upti?

p=—"TBL N,y 4.1
VonNLy N T (4.10)
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where we use eq. (4.1) for ¢(r) joining with definitions (4.2) and (3.20). By applying the criti-
cal condition (3.24) to the above equation of state (4.10), we can obtain the expressions for
critical temperature, critical pressure, and critical volume, namely,

2+y
Ty MG+ Vo)
71\: 2+y 3y s (4'11)
R (“;y) (NAV)“ 4
1—y

A 5
1’+’)’ (G()E*"FU(),UL)

P.= — , 4.12
2 (:’* -wf G @12
1+y
V., *3——~( N, 4.13
=Ty (Nay). 4.13)
For these critical expressions, the ratio P.V./T, is given as,
PV, (1-y3+
SN Chat Y (4.14)

7.  4Q2+y)

As seen from eq. (4.14), the ratio P.V./ T, changes with the value of y. At y=1/4, ratio P.V./
T, takes the value 22.22[atm - cm3/mol- K] for one-molar gases. This value is very close to the
experimental average 22.15[atm - cm?/mol-K]. This leaves us the fine value 1/4, whose mean-
ing remains unknown at present.
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