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Synopsis; The class of cellular automata describing by three symbols is named Ternary Cellular Au

tomata. A general rule description for these Ternary Cellular Automata is presented. Since Ternary Cellu

lar Automata include Binary Cellular Automata, the Ternary Cellular Automata can be explained by a

scheme of interactions between different kinds of Binary Cellular Automata. Some interesting spatio-tem

poral patterns in Ternary Cellular Automata are shown.

1. Introduction

Ternary cellular automata discussed here are cellular automata with three level states. A

group of neighboring cells determines the next time state level of the centrally sited cell. In

the present paper, we restrict our consideration to 3 neighbor cases. Thus here we treat the 3-

neighbors 3-level cellular automata (CA3^) only.  A few examples of CAs^ had been investi

gated, namely, patterns based on some totalistic rules (Wolfram [1]) and some other patterns

based on totalistic rules are seen in a book [2]. We investigate CAs^ more systematically. In

particular, we have studied the rule description for cellular automata in a general sense using

a matrix form in [3] and recurrence formulae in [4]. We show the CAs^ rules in section 2.

The temporal development of cell states for CA3^ is described by the following recur

rence equation.

Si(t+l) = f(Si-i(t), Si(t), Si+i(t)), (1)

where Si(t) signifies the i-th cell state at time t. We describe a mapping f: (Si_ i(t), Si(t), Si+i(t))

-^Si(t +1) as a “rule”. The total number of CA33 rules is 3''" where W = 3^ i.e., ̂ . Hence a

complete numerical study of temporal patterns for all rules would be difficult. Wolfram

had performed a complete study of the temporal patterns for all the rules of 3-neighbor 2-

level cellular automata (CA23) [5], since the number of rules is so much smaller. The tem

poral development of cell states in a cell array, i.e., temporal pattern, is called the “spatio-

temporal pattern”. Thus we analyzed CA3^ rules to study the CAy^ spatio-temporal patterns.

We then revealed that the rule structure of CA3^ can be illustrated schematically as in Figure

1. The {-1, 1}, {-1, 0}, and {0, 1} in Fig. 1 mean binary input triplets such as e.g.

(-11 - 1) for {- 1, 1}, (0 - 1 -1) for {-1, 0}, (1 1 0) for {0, 1}. All the input triplets are
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Figure 1 Schematic Description of CAs^ Rule Structure

tabulated in Table 1. The special input triplets (-1 - 1 - 1), (0 0 0), and (1 1 1) are bridges

between two CAs^ systems. The central zone in Fig. 1 denotes ternary input triplet of map

ping, i.e., (Si_i(t), Si(t), Si+i(t)). As expected, the includes of binaries {-1, 1},

{-1, 0}, and {0, 1}. This inclusion relation can be extended to the general case, that is

CAm'LtCAn,^ where L>L' and m>m'.

As expected from the scheme shown in Fig. 1, we found local-binary CA patterns where

complicated patterns of CA^^ are separated by gray stripes (Figure 2). In principle, there

should be globally ternary patterns, i.e. triple state levels coexisting everywhere in spatio-

temporal patterns. We also found a moving soliton in CA^^, namely, the unit (1 - 1), which

moves to the right in the array (0.. .0 1 -10.. .0), and the unit (- 1 1), which moves to the left

in the array (0...0 - 1 1 0...0) [4]. Examples of spatio-temporal ternary CA patterns of Wol

fram type are shown in section 3. We briefly summarize the present study for Ternary Cellu

lar Automata in section 4.

2. Rule Description for Ternary Cellular Automata of Neighborhood Three

As stated above, the rule for CA^^ indicates the mapping of an input triplet state to the

output state of the center cell, as shown in eq. (1). For the ternary case, the number of input

triplet states is 3^ = 21. The output state takes one of three levels, so that the number of possi

ble mappings from input triplet states (Si_i(t), Si(t), Si+i(t)) to output cell state Si(t-l-l)

amounts to 32'^=7.6256 x lO^^. The output cell states are symbolically denoted by r^ for k-th

state of the input triplet. We assume that state levels are assigned to the three integers { - 1,

9



Memoirs of the Kokushikan Univ. Center for Information Science. No. 24 (2003)

0, 1}. Each Fk therefore takes one of these three integer values, so that rke{-l, 0, 1}.

These are tabulated (Table 1). The output states for essentially ternary input are assigned to

^6, Ts, ri2, ri6, F20, and F22. The outgoing arrows from triplets of the central zone in Figure 1

imply outputs re, rg, ri2, rie, F2o, and r22- The bridging input triplets between any two of three

CA32 systems are ri, ri4, and Vxi. The output components of rules in three are

(ri> Tg, r-j, Tg, Fi9, F21, F25, F27}

{ri, F2, F4, Fs, rio, rn, r^, Tu) for {-1, 0} in CAj^ class,

{ri4, ri5, ri7, rig, F23, T24, r2e, r27> for {0, 1} in CA32 class.

Table 1 gives the complete classification of output components of CA^^.

Following our previous studies [3,4], the rule for CA3^, that is the mapping of input

triplet states to an output state level, is expressed as follows:

f(Si-i(t), Si(t), Si+i(t))-Xooo + XiooSi-i(t) + XoioSi(t) + XooiSi+i(t)

+ XiioSi- i(t)Si(t) + XioiSi- i(t)Si+ i(t) + XoiiSj(t)Si+i(t)

+ X200S?- l(t) + Xo2oSi2(t) + Xoo2Sf+ i(t)

+ X2ioSf- l(t)Si(t) + X20lSf- i(t)Si+ ,(t) + X02lSi2(t)Si+i(t)

+ Xi2oSi_ i(t)Si2(t) + Xi02Si- i(t)S?+ i(t) + Xoi2Si(t)Sf+ i(t) + XiiiSi- i(t)Si(t)Si+ i(t)

+ X220S?- l(t)Si2(t) + X202S?- ,(t)S?+ i(t) + X022smsh i(t)

+ X21lSf_ i(t)Si(t)Si+ i(t) + Xi2iSi- i(t)S;2(t)Si+ i(t) + Xii2Si- i(t)Si(t)Sf+ i(t)

+ X221S?- i(t)Si2(t)Si+i(t) + X212S?- l(t)Si(t)S?+ i(t) + Xi22Si- i(t)Si2(t)S?+ i(t)

+ X222S?-,(t)Si2(t)S^i(t)

for {-1, 1} in CA32 class. (2)

(3)

(4)

(6)

=  ,(t)S/^i(t)Sr+ l(t) (7)

= r,(Sf_ ,(t) - Si. ,(t))(S,2(t) - Si(t))(S?+ ,(t) - Si. ,(t))/8

+ r2<SP_ ,(t) - Si- ,(t))(S«t) - Si(t))(l - S?M(t))/4

Table 1 Rule Components Assignment to Input Triplets

Input Triplets Output Input Triplets OutputInput Triplets Output

Time tTime t Time t t+1 t+1t+1

Si Si Si s Si Si- Si Si+, SiSi-I Si Si+, i + 1-1

-1 1 1-1 -1 0 -1 -1-1 fl fio fl9

0 00 0 -1 1 -1-1 -1 r2 rii T20

1 0 -1 1 1 -1 1-1 1 f3 ri2 f21

00 -1 0 0 -1 1 -1-1 ri3 t22f4

00 0 0 0 0 1 0-1 ri4 t23f5

00 0 1 1 1-1 0 1 ri5 f24f6

-1 1 1 -11 -1 0 1-1 f7 ri6 f25

0 1 01 0 0 1 1-1 ri7 f26

1 0 1 1 1 1 1-1 1 ri8 l27f9
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+ r3(S?_, (t) - Si _ ,(t))(S,2(t) - S,(t))(S?+, (t) + Sh- ,(t))/8

+ r4(S?-,(t) - Si_ ,(t))(l - Si2(t))(S?4 ,(t) - Si+,(t))/4

+ rs(S?_ ,(t) - S,_ ,(t))(l - Si^(t))(l - ,(t))/2

+ vdSl ,(t) - S,_ ,(t))(l - S,2(t))(S?4 ,(t) + S,4i(t))/4

+ r,(Sf_ ,(t) - Si_ ,(t))(S,2(t) + S,(t))(S?4,(t)  -Si+,(t))/8

+ H(Sl ,(t) - S,_ ,(t))(S«t) + S,(t))(l - Si ,(t))/4

+ r,(S?-,(t) - Si_ ,(t))(S«t) + S,(t))(Sf4,(t) + Si+,(t))/8

+ r,„(l - Si ,(t))(Si2(t) - Si(t))(Sf4 ,(t) - Si4 ,(t))/4

+ r„(l -S^,(t))(Si^(t)-Si(t))(l -S?4,(t))/2

+ r,j(l - S?- ,(t))(Si^(t) - Si(t))(Sf+ ,(t) + S,4 ,(t))/4

+ r,j(l -Sf_,(t))(l -S|2(t))(Sf+,(t)-Si4,(t))/2

+ r„(l - Si ,(t))(l - Si^(t))(l - Sf+ ,(t»

+ r,5(l - Sf- ,(t))(l - SiHt»(Sf+ ,(t) + Si4 ,(t))/2

+ r,j(l - S?_,(t))(Si2(t) + Si(t))(Sf+ ,(t) - Si+,(t))/4

+ r„(l -S?_,(t))(S,2(t) + S,(t))(l - S?4,(t))/2

+ r,s(l - Sf_ ,(t))(Si^(t) + Si(t))(S?+ ,(t) + S,+,(t))/4

+ r„(S?_ ,(t) + Si- ,(t))(Si2(t) - Si(t))(S?+ ,(t) - Si 4 ,(t))/8

+ r2o(Sf_,(t) + Si-,(t))(Si2(t)-Si(t))(l - S?+ ,(t))/4

+ r2,(Sf- ,(t) + Si- i(t))(S«t) - Si(t))(S?+ ,(t)  + Si 4 ,(t))/8

+ r22(S?- ,(t) + Si- ,(t))(l - Si2(t))(S?4 ,(t) - Si+,(t))/4

+ r23(S?- ,(t) + Si- i(t))(l - SaoXl - S?+ ,(t))/2

+ r24(S?- ,(t) + Si- i(t))(l - SiXt»(S?4 ,(t) + Si+,(t))/4

+ r25(S?- ,(t) + Si - ,(t))(SiXt) + Si(t))(Sf+ ,(t) - Si4 ,(t))/8

+ r2e(S?- i(t) + Si- ,(t))(SiXt) + Si(t))(l - Si ,(t))/4

+ r2,(S?- ,(t) + Si- ,(t))(SiXt) + Si(t))(S?+ ,(t) + Si 4 i(t))/8.

Note that Si^(t) means the product Si(t) x Si(t). Each term of eq, (8) behaves in a point-wise

way. In other words, the function factor in each term, which is multiplied by rule component

rk, ke {1, 2, 3, ..., 27}, takes value 1 only for the proper particular input triplet specified by

the function factor.

Equivalency of formulae (6) and (8) leads to the fact that the x^y coefficients are deter

mined by the rule (ri, Tz, ..., r27>. The description of the x^fiy coefficients in terms of the

rule components ri, r2, rs, ..., Vzi are obtained by this equivalency (see [6] for explicit forms).

Here we present a modified description of the x^fiy coefficients. In the modified description,

the coefficients {xooo, Xioo, Xqio, Xqoi, Xno, Xioi, Xon, Xm} require rule components rj, r2,

r3, ..., r27 only, while the other x^y coefficients can be described by partly using the

coefficients {xqoo, Xioo, Xqio, Xqoi, Xno, Xioi, Xqh, xm) in addition to the rule components ri,

r2, r3, ..., r27. The modified description of x^y is as follows:

Xooo —Ti4, Xioo = ( —rs + r23)/2, Xoio = (“fn+ ri7)/2,

xooi = (- fi3 + ri5)/2, xiio = (r2 - rg - r2o + r26)/4

(8)
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Xioi = iu - T6 - T22 + r24)/4, xoii = (rio - ri2  - Tie + rig)/4,

X2oo = (r5 + r23)/2 —Xooo, Xo2o = (rii + rn)/2 —xooo»

Xoo2 = (ri3 + ri5)/2 — Xooo> X210 = (~ f2 + rg ~ r20 + r26)/4 — Xqio,

X20I = ( - T4 + F6 - T22 + r24)/4 - Xqoi ,

X120 = (- f2 - rg + F20 + r26)/4 - Xloo, X021 = (- rio + - Tie + rig)/4 - Xqoi,

X102 = ( - f4 - T6 + T22 + F24)/4 - Xioo,

X012 = (-rio-ri2 + rj6 + rig)/4-Xqio, x„i = (-Ti  + Fj + F7-F9 + Fi9-T21 ~r2s + r27)/8,

X220 = (f2 + rg + r20 + r26)/4 - X200 - X020 ~ Xqoo, X202 = (r4 + f6 + T22 + r24)/4 - X200 ~ X002 “ Xqoo,

X022 = (rio + Ti2 + ri6 + rig)/4 - X200 - X020 ~ Xqoo,

X211 = (ri - F3 - F7 + F9 + Fi9 - F21 - F25 + r27)/8 - Xon,

X12I = (fl - F3 + F7 - F9 - Fi9 + F21 - F25 + r27>/8 - Xioi,

X112 —(fl + F3 —F7 —F9 —Fi9 F21 + r25 + r27)/8 —Xiio,

X221 = ( - Ti + F3 - F7 + F9 - Fi9 + F21 - F25 + r27)/8

+ (f4 - T6 + rio - ri2 + Fi6 - r,g + F22 - r24)/4  + Xqoi ,

X212 = (-ri-r3 + F7 + F9-Fi9-F2i+F25 + r27)/8

+ (f2 - rg + Fio + Fi2 - Fi6 ~ Fjg + F20 ~ r2e)/4  + Xqio,

X122 = (- ri - F3 - F7 - F9 + Fi9 + F21 + F25 + r27)/8

+ (r2 + 14 + F6 + Fg - F20 - T22 “ T24 ~ 4 + Xioo,

X222 = (ri + F3 + F7 + F9 + Fi9 + F21 + F25 + F27)/8 - X220 - X202 - X022 - X200 - X020 - X002 - Xooo-

(9)

As can be seen fFom the FewFitten Felationships (9), the coefficients X210, X201, and X120 can

be FewFitten in teFms of the coefficients {xqoo, Xioo, xoio, xqoi, Xno, Xioi, Xqh, Xm} only. We see

the Felation between subscFipts foF Fight and left side teFms, namely, 210 to 120 (110 + 010)

foF X210, 201 to 102 (101+001) foF X201, and 120 to 012 (Oil +001) foF X120. Then X210 and x^o

aFe peFmuted, and that X201 has miFFOF symmetFy. We can also see the Felationship between

Fule components and x coefficients foF CAg^ of {  - 1, 1}. The tFiplet pFoduct teFms of eq. (6)

plainly disappeaF when one of input tFiplets takes the value 0. As long as the input tFiplet

takes one of state levels - 1 of 1, the higheF-oFdeF teFms contFibute to the deteFmination of

the output level.

To see the { -1, 1} binaFy featuFe explicitly, we can FewFite the expFession of Fule foF

CAg^ in the following foFm:

f(Si_,(t), Si(t), Si+,(t)) = fo±i(S,-,(t). Si(t), Si + ,(t))

+ S?_.(t)S«t)S?+.(t)fi,(Si_,(t), Si(t), Si+,(t)), (10)

where fi±i(Si_](t), Si(t), Si+i(t)) and f±,(Si_,(t), Si(t), Si+i(t)) are defined as:

foii(Si-.(t), S,(t), S,+,(t)) = r,4(l - Sf_,(t))(l -Si^(t))(l -Sf*,(t))

+ ((- r, + r23)/2)S,_ ,(t)(l - Si^(t))(l - S?+ ,(t))

+ ((- r„ + r„)/2)(l - ,(t))S,(t)(l - 8?+ ,(t))

+ ((- r,3 + r,5)/2)(l - S?_ ,(t))(l - Si2(t»Si * ,(t)

— 12 —
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+ ((rs + r23)/2)S?_ i(t)(l - Si2(t))(l - Sf+ ,(t)) + ((r„ + rn)/2)(l - S?_i(t))Si2(t)(l - Shi(t))

+ ((ri3 + ri5)/2)(l - S?_i(t))(l - SHmhi(t) + ((r2 - rg - r2o + r26)/4)Sj- ,(t)Si(t)(l - Shi(t))

+ ((F4 - F6 - F22 + r24)/4)Si- ,(t)(l - Si2(t))Si+ ,(t)

+ ((rio - ri2 - ri6 + rig)/4)(l - S?_ i(t))Si(t)Si+i(t)

+ ((- r2 + rg -120 + r26)/4)S?_ ,(t)Si(t)(l - i(t))

+ (( - T4 + F6 - F22 + r24)/4)Sf- i(t)(l - Si2(t))Si + ,(t)

+ ((- T2 - rg + r20 + r26)/4)Si_ i(t)Si2(t)(l - Sf+ ,(t))

+ ((- rio + ri2 - r,6 + r,g)/4)(l - S?_ i(t))Si2(t)Si+,(t)

+ (( - f4 - F6 + F22 + r24)/4)Si- ,(t)(l - Si2(t))S?+ i(t)

+ ((- rio - ri2 + r,6 + rig)/4)(l - S?_ i(t))Si(t)S?+ i(t)

+ ((r2 + rg + F2o + r26)/4)S?_ ,(t)Si2(t)(l - Sl i(t))

+ ((r4 + rg + F22 + r24)/4)S?_ i(t)(l - S;2(t))Sf+ i(t)

+ ((rio + ri2 + ri6 + rig)/4)(l - Sf_ i(t))Si2(t)S?+ i(t), (11)

f±i(Si-i(t), Si(t), Si+i(t)) = (1 /8)(- ri + rg + F7 -r9 + ri9 -F2i -r2s + r27)Si_ i(t)Si(t)Si+i(t)

+ (1 /8)(ri - rg - F7 + F9 + ri9 - rgi - r2s + r27)Si(t)Si+i(t)

+ (1 /8)(ri - rg + F7 - F9 - ri9 + rgi - rgj + r27)Si- i(t)Si+i(t)

+ (1 /8)(ri + rg - F7 - F9 - ri9 - rgi + rgg + r27)Si _ i(t)Si(t)

+ (l/8)(-ri + rg-r7 + r9-ri9 + r2i-r25 + r27)Si+i(t)

+ (1 /8)( - ri - rg + F7 + F9 - rj9 - rgi + r2s + r27)Si(t)

+ (l/8)(-ri-rg-r7-r9 + ri9 + r2i + r25 + r27)Si-i(t)

+ (1 / 8)(ri + rg + F7 + F9 + ri9 + F2i + r2s + r27).

Note that f±i(Si_i(t), Si(t), Si+i(t)) refers to binary (-1, 1} CA rules and fo±i(Si_i(t), Si(t),

Si+i(t)) denotes the remaining terms of the rule for ternary CA (CAg^) after collecting binary

{ - 1, 1} behavior terms. It is known from the expression (10) that the binary term f±i(Si_i

(t), Si(t), Si+i(t)) always drops out when at least one of term in the input triplet (Si_i(t), Si(t),

Si+i(t)) takes the level 0. In other words, the binary term f±i(Si_i(t), Si(t), Si+i(t)) survives

only when all the members of the input triplet take one of the levels - 1 or 1. The property

given by collapsing to CAg^ rules occurs by the state level distribution in the cell array.

(12)

3. Spatio-Temporal Patterns Appearing in Ternary Cellular Automata

We firstly encountered ternary cellular automata in a study of discrete effects resembling

those of the nonlinear Schrodinger equation (NLSE) [3]. The binary blocks 1 - 1 and - 11 in

the “sea” of 0 s move to the right and the left directions respectively, and they pass through

each other after collisions [31, like solitons of the continuous NLSE, when the rule satisfies

the condition that rg = rjo, rg = r^g, rg = rjg =  - 1, rg = rgg, rg = rig = 0, r9 = rgg, Tn = rgo = 1, rig =

r23 = 0, rig^rgg, r4= -1, rn = 1, ri4 = 0, rgi =  — 1, r24 = 0. Since we had the general scheme of

CA rule description [3,4], we can investigate cellular automata in a systematic way.

As expected from Wolfram’s works [5], many rules of CAg^ give apparently similar

— 13 —
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spatio-temporal patterns. We have been carrying out a numerical study for the patterns of

ternary cellular automata as ternary texture stimuli for visual science studies [6]. The entire

numerical study of ternary cellular automata has not been completed due to the large number

of CA33 rules. Here we show examples of spatio-temporal patterns from the study of ternary

textures [6]. The examples presented are a small subset of the ternary textures that we have

investigated. In the texture study, a recurrence rule of the input triplet to the output pixel is

applied to an initially-random ternary two-dimensional pixel array. Since a texture is a two-

dimensional object, two-dimensional (2D) geometry may be considered for the recurrence

rule. We call a 2D recurrence rule a “glider”. The Wolfram type cellular automata (Wolfram

CA) produces spatio-temporal patterns by 2D recurrence rules if one-dimensional space and

time (ID space, time) is to be assigned to two-dimensional space (x, y). The Wolfram glider

in our texture study is identical to the recurrence equation (eq. (1)). The textures given by the

Wolfram glider therefore are the spatio-temporal patterns of a Wolfram CA with random in

itial configuration of cell states and random boundary conditions.

Figure 2 shows examples of spatio-temporal patterns of ternary Wolfram CA. As seen

from the subfigures, the well-known Wolfram CA patterns are seen in a localized way. These

spatio-temporal patterns are obtained by the following rule:

f(Si_i(t), Si(t), Si+i(t))

= XiioSi- i(t)Si(t) + XioiSi- i(t)Si+ i(t) + XoiiSi(t)Si+ i(t) + X22oSf- l(t)Si2(t)

+ X211S?- i(t)Si(t)Si+i(t) + Xi2iSi_ i(t)Si2(t)Si+i(t) + x„2Si_ i(t)Si(t)S?+ i(t)

+ X202S?- l(t)S?+ i(t) + X022Si2(t)S^ ,(t) + X222S?- l(t)S;2(t)Sf+ i(t)

= X11 oSi -1 (t) Si(t) + X101 Sj -1 (t)Si+1 (t) + Xq 11 Si(t)Sj+1 (t)

+ si i(t)Si2(t)S?+ i(t)(x„2Si_ i(t)Si(t) + Xi2lSi- i(t)Si+i(t) + X2iiSi(t)Si+i(t) + X222)

+ X220S?- l(t)Si2(t) + X202S?_ i(t)S^ i(t) + X022SiHt)Sf+ i(t),

Xiio = (f2- rs - r20 + r2e)/4, Xioi = (r4 - rg - r22 + f24)/4, Xqh = (rjo- ri2 - rjg + rjg)/4,

X2ii = (ri-r3-r7 + r9 + ri9-r2i-r25 + r27)/8-Xoii,

X121 = (ri - r3 + r7 - r9 - ri9 + r2i - r2s + T2i)/8 - Xioi,

Xii2 = (ri + r3~ r7~ r9~ ri9 —r2i + r25 + r27)/8 —Xiio,

X220 = (^2 + Ts + ̂20 + T26)/4 — X200 ~ X020 ~ XooOj

X202 = (1*4 + T6 + ̂22 + ̂24)/4 “ X200 “ X002 “ Xooo>

X022 = (rio + ri2 + ri6 + ri8)/4 — X200 “ X020 ~ Xooo»

X222 = (fi + T3 + r7 + r9 + ri9 + r2i + r2s + T2j)/8 — X220 ~ X202 ~ X022 ~ X200 ~ X020 “ X002 ~ Xooo»

Xooo~ri4, X2oo = (r5 + r23)/2 —Xqooj Xo2o~(rii+ ri7)/2 —Xqoos Xoo2~(ri3 + ri5)/2 —Xqoo-

(13)

(14)

(15)

The spatio-temporal patterns are banded binary Wolfram CA, that is the spatio-temporal

patterns of CA32 by { - 1, 1} are separated by gray stripes. These patterns are a developed

version of class 2 in CA33 from class 2 of CA32 [1]. These patterns cannot be generated within

CAl of the Wolfram type.

14 —
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Figure 2 Patterns of Locally Binary CA in CAj^

From eq. (14), if Xho = Xii2, Xioi =Xi2i, and Xqh =X2n then f(Si_i(t), Si(t), S;+i(t)) includes
the term (x„oSi_i(t)Si(t) + XioiSi_i(t)Si + i(t)  + XonSi(t)Si+,(t))(l+Sf_i(t)Si2(t)Sf+,(t)). This fact
implies that the decomposed factor XnoSi-i(t)Si(t) + XioiSi-i(t)Si+,(t) + XonSj(t)Si + i(t) is al
ways significant, because another factor (1 + Sf_,(t)Si2(t)Sf+i(t)) takes the value 1 when at
least one of input triplet cells takes the value 0, and that takes the value 2 when all the input
triplet cells take the value -1 or 1. The other terms of eq. (14), X22oS?-i(t)Si2(t)+ X202S?-i
(t)Si^+i(t) + Xo22Si^(t)Sf+i(t), behave like a binary {0, 1} CA. Thus we know that localized
patterns are generated by the terms x„oSi-i(t)Si(t) + XioiSi-,(t)Si+i(t) + XoiiSi(t)Si + i(t).

Spatio-temporal patterns of Figure 3 are true ternary patterns, except for the top Lin-
Saml (4‘^ horizontal row) and LinSamS (6^^ horizontal row) clearly show locally ternary pat
terns. The third picture of LinSaml shows the behavior of class 4 on chaotic temporal de
velopment of cell states (class 3). The pictures on the top row are binary patterns, namely.
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spatio-temporal patterns of by {- 1, 1} with random boundary conditions. These bina

ry patterns are a part of Wolfram CA patterns, but the boundary conditions are different.

The Rloc and LinSam are the name for several groups that are explained below.

Rloc26 means that r2 = r4 = r5 = rio = rn = ri3=  1 for {- 1, 0} triplets, r3 = r7 = r9 = ri9 = r2i

- r25 = 0 for { - 1, 1} triplets, rij = rn = rjg  = r23 = r24 = r26 = - 1 for {0, 1} triplets, two - Is,

Wolfram Examples

21
Example Number

Figure 3 Selected Spatio-Temporal Patterns in CAs^
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two Os, and two Is for {rg, rg, Tie, ̂ 20, r22>, and (rj, 1,4, r27>e {(- 1,0, 1), (- 1, 1,0), (0,

-1,1), (0, 1, -1), (1, -1,0), (1,0, -1)}. Rloc23 means that r2 = r4 = r5 = rio = rii = ri3 = 0

for { - 1, 0} triplets, 1^ = 12 = 19 = Tig = r2i  = r2s = - 1 for { - 1, 1} triplets, rij = r^ = rig  = r23 =

r24 = r26= 1 for {0, 1} triplets, two - Is, two Os, and two Is for {re, rg, r^ rie, r2o, r22), and (r

ri4, r27)G((-l,0, !),(-!, 1, 0), (0, -1, 1), (0, 1, -1), (1, -1,0), (1,0, -1)}. The name

LinSam means that the Xioo, xqio and Xqoi coefficients of the linear terms are all zero. The rule

LinSam satisfies that r5==r23, rn = ri7, and ri3  = ri5, from the equation (9) which denotes the

relationships between x coefficients and rule components ri (i= 1, 2, ..., 27). The rule compo

nents that are not specified in Table 2 are used as parameters that take one of the values

{ — 1, 0, 1}. The rule components rs ( = r2g), rn  (= rn), and r^ ( = ri5) also take the value of

one of integers -1,0, and 1. The other rule components for LinSaml-6 are listed in Table 2.

Table 2 List of LinSam 1 to LinSam 6 Conditions

LinSam 5 LinSam 6LinSam 1 LinSam 2 LinSam 3 LinSam 4

Xioo-Xoio-Xooi-0. [xioo-(-r5 + r23)/2, Xoio-(-rn+rn)/2, Xooi-(-ri3 + ri5)/2]

r,4 = - 1 or 1
r, = r27 = 0

fi = 1, ri4= - 1 or 1
f27= -1

ri = ri4 = r27 = 0ri = ri4 = r27 = 0 Tl — 1. ri4 —0. T27— “ 1

T3 - T7 - l9 - ri9 - T21 - T25 - 0 r3 = r7 = ri9=l, r9 = r2i = r2s= -1

r6 = 0r2 = T4 = 0 r2 = rs = 0 r2 = T4 = r26 = 0

The LinSam 1-6 rules generate wide range of patterns in addition to the patterns shown

in Fig. 3. Figure 4 shows the patterns obtained for the propagating local structures and their

collisions. These patterns are selected from the LinSam 3 pictures. As seen from Fig. 4, there

are many types of propagating local structures. For example, some propagating local struc

tures are large, some of them are like sea waves, some of them propagate while emitting

beams, some of them show an alternation of appearing and disappearing of local structures

in a wavy sea, and some show complicated local structures that propagate in a chaotic man

ner.

We expect that the fastest propagation of a local structure is 1 site-shift per unit time

from the recurrence equation (eq. (1)) for neighborhood three CA. The propagation veloci

ties for larger local structures are slower than  1 site-shift per unit time. The propagation

velocity of 1 site-shift per unit time is seen in the dislocations included in wavy lines.

However we recognize that the wavy lines are faster propagators than the velocity of 1 site-

shift per unit time. The wavy lines are modification of horizontal stripe lines just like the

birth-death process. The horizontal lines mean an infinite limit of the structure propagation.

The wavy lines therefore move faster than 1 site-shift per unit time. Thus a faster case than 1

site-shift per unit time only occurs for wavy lines. Hence we knew that the wavy lines form

quite a large-scale structure with respect to the space direction.

In the Rloc26 rule, every binary triplet input gives an output of excluding integers except

for the input triplets (-1, -1, -1), (0, 0, 0), and (1, 1, 1). Thus it is expected that the

Rloc26 rule may not cause any large local structures. This rule produces wavy lines or vertical
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Figure 4 Propagating Local Structures in LinSam Spatio-Temporal Patterns

Stripe lines like standing solitons, since the rule requires rapid change of state in each cell.
Actually the Rloc26 rule generates many such kind of patterns. But the Rloc26 rule generates
chaotic triangular patterns that are seen in Wolfram CA [7]. The chaotic triangle patterns are
consisting of white, black, and gray triangles [71. This should be a feature expected from the
exclusion property of the Rloc26 rule.

The patterns of ternary cellular automata are similar to those of binary cellular automa
ta worked by Wolfram [5]: triangles appearing in chaotic spatio- temporal patterns are typi
cal in CAs^. We cannot say what is a typical pattern in CA3T We have not inspected the all
the patterns generated by the rules of CA3^ but probably we have explored the major pat-
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terns of CAs^. We may explain the patterns in CAs^ by the some manipulation of the patterns

generated by CA^^. This is expected from the written form of the rule, eq. (10). The remain

ing point is how to predict what type of spatio-temporal pattern a given rule will generate.

4. Conclusion

We have studied a selection of the spatio-temporal patterns for ternary CA with three

neighbors on a strategy to investigate, because there are 7.6256 x 10^^ entire discrete func

tions (i.e., rules). Our strategy in the current study is based on the coefficients appearing

in eq. (6). We eliminate the linear terms of eq. (6). The banded binary CA patterns appear

when we eliminate the order of eq. (6). LinSam was just named for setting the

linear terms represented with the summation of rule components (see Table 2) to be zero.

The LinSam rules can generate complicated spatio-temporal patterns shown in Figs 3 and 4.

We furthermore used a guideline to reduce the computation load, viz. an even assignment of

rule components to the integers { - 1, 0, 1}. In other words, the 27 rule components in

were assigned so that 9 of them are - 1, 9 of the remaining 18 components are 0, and finally

the remaining 9 components are 1. Then, for example, the number of generated patterns was

5192 in LinSam 1 rules [6]. Consequently, we were able to avoid having many trivial spatio-

temporal patterns in CA3L There exist 7.6256 x 10^^ j-uies as mentioned, so we have investi

gated a few of them. From the well-known Wolfram work [5], we knew that many rules

generate the same pattern or quite similar patterns, apart from a short initial transient. Our

strategy used here avoids this repetition. However we need to know what kind of rules gener

ate the same pattern or almost the same pattern in order to understand the feature of ternary

cellular automata. This remains a task for our future investigations.
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