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Synopsis: We discuss algebras suitable for investigating both cellular automata (CA) and binary tex-
tures (Btext). A recurrence form of discrete functions of an increasing number of variables is presented. A
more appropriate form, describing the rules of CA, is obtained by using the recurrence formula on the dis-
crete functions. Concerning Btext, discrete functions on three integer sets such as { —1, 0, 1} have more
practical meaning in visually relevant textures. The discrete functions are described by using ordinal
arithmetic addition and multiplication. Consideration of discrete functions leads to an algebra on sets of
finite number of integers. This algebra is called ‘Discrete’ Algebra.

1. Introduction

We have been studying soliton-like behaviour of some cellular automata [1] and dis-
crimination of binary textures [2, 3]. In the studies, we use mappings on sets consisting of a
few integers such as {0, 1}, {—1, 1}, or{—1, 0, 1}, which we refer to as discrete mappings.
These discrete mappings can be described by functions based on an algebra for a discrete set.
Here a discrete set means a set consisting of a finite number of integers. All functions on a
discrete set are finite so that the whole function space for a discrete set can be seen at an
instant. We call the functions for discrete sets discrete functions. Discrete functions on a dis-
crete set are related to each other much as the Boolean functions.

In the present paper we describe discrete functions using ordinal sums and products
rather than Boolean expressions. The Boolean functions can also be expressible by using or-
dinal operations of addition and multiplication. The expression of discrete functions by use
of real functions leads to a set of real functions which implements the discrete mapping com-
pletely for special points. These special points form a group, and establish a discrete al-
gebra.

In section 2, we define the discrete algebra and discuss the nature of it. We also discuss
the discrete algebra and its relationship to the Boolean algebra. In section 3, we consider
practical discrete functions for sets consisting of two or three elements. The practical expres-
sions become different, depending on what kind of integer assignment we utilize. We also
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present a recurrence formula of discrete functions with respect to increases neighbour num-
bers. The generalization of two and three element cases gives a theorem on discrete func-
tions. In section 4, we discuss the application of discrete algebra to cellular automata (CA)
and binary textures (Btext).

2. Discrete Algebra

As mentioned in introduction, we describe algebras on discrete sets. The discrete al-
gebra was derived from a Boolean algebra when we studied rules on cellular automata and
the nature of binary textures and human discrimination of different types of textures. In cel-
lular automata, usually the set of integers {0, 1} are used to represent each cell state. We
however extended the state values to three integers, i.e., a set { —1, 0, 1}, when we studied
solitons representing a discretized analogue of partial differential equations. The set of in-
tegers {—1, 1} are used to make a binary texture where each pixel of the texture can be
thought of as being either black or white. The set { —1, 1} are easily converted to the set {0,
1} by the relation S=(1+s5)/2 or S=(1—5)/2, where S denotes one of {0, 1}, and s that of
{—1, 1}. Then an algebra on { —1, 1} has the same properties as the Boolean algebra on {0,
1}. But the set {—1, 1} don’t contain zero explicitly so that we can easily see that some of
postulates for the set {0, 1} aren’t satisfied for the set { —1, 1}. This point lead us to con-
sider discrete algebras.

To discuss the discrete algebras, we first mention Boolean algebra. A Boolean algebra is
defined as follow [4, 5]:

Definition 2—1 (Boolean algebra), A class of set B together with two operations (+) and
(+) is a Boolean algebra if and only if the following postulates hold;

P,. The elements of B are closed with respect the operations (+) and(-), respectively.

P,. The operations (+) and (-) are commutative. (X+Y=Y+X and X- Y=Y X).

P,. There exist in B distinct elements 0 and 1 relative to the operations (+) and (),
respectively. (X+0=X and X-1=X)

P;. Each operation is distributive over the other.
(X+YZ=(X+Y)(X+Z)and X- (Y+Z)=X Y+ X -Z).

P,. For every element X in B, there exists an element ~X in B such that
X+~X=1and X-~X=0.

Notice that X, Y, Z denote elements in B, and the set {0, 1} make such a kind of set B.

As seen from the definition of Boolean algebra, the set {—1, 1} lacks the distinct ele-
ment 0. As described above, however, a one-to-one relationship between the sets {—1, 1}
and {0, 1} exists. Then all mappings on the set {—1, 1} is identical to those on the set {0, 1}.
We can therefore see the Boolean algebra like nature with respect to the set {—1, 1} even
though the set {—1, 1} do not satisfy the definition of Boolean algebra directly. At this
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point we consider another type of discrete algebra for the set {—1,0, 1}. The set {—1,0, 1}
have distinct elements 0 and 1. The element — 1 cannot satisfy the postulate P,. Thus we
need to modify the definition of ‘NOT’ in Boolean algebra. This is another reason why we
consider discrete algebra.

To obtain a well-defined discrete algebra, we can first think about Boolean functions.
The operations of Boolean algebra are equivalent to the mappings on a set B, in fact, they
are two Boolean functions. The operation (-) is the same as the multiplication of the ordinal
arithmetic algebra, but another operation () is different from addition of ordinal arithmet-
ic. The operation (+) yields 1+ 1=1 so that we regard the operation (+) as a nonlinear func-
tion. A practical expression for the operation (+) of the Boolean algebra is X+ Y— XY for
the set {0, 1}. This expression has a nonlinear term XY explicitly. We therefore use a few
members of whole functions, instead of the operations such as (+) and (-), in the discrete al-
gebra. Hence, we define the discrete algebra as follows:

Definition 2-2 (Discrete algebra)

Let { D} be discrete sets and let X and Y be elements of a set D. Operations for elements
of a set D which are k& self-mappings { fy, fi, ..., fx—1} on the set D are introduced and a class
of set D with introduced operations is a discrete algebra if and only if a set of L postulates
{ Py, Py, ..., Py} hold. The postulates { Py, Py, ..., P,_;} include the following ones:

Py. The elements of D are closed with respect to each operation given by the self-map-

pings {fo, f1, ..., fe—1}. The number of operations is less than the number of dis-
tinct elements in D.

P,. The self-mappings {/o, fi, ..., fx—1} are commutative.
(X, )=f(Y, X), j=0,1, ..., k=1)

P,. There exist in D distinct elements { X,*, X*, ..., X;*} relative to the self-mappings
{fo, fis -0 fim1 ), respectively. (fi(X, X;)=X,j=0,1,..,k—1)

P;. There exist distributive pair of operations.

Py. For every element X in D, there exists an element ~.X in D which satisfies a special
condition such as ‘NOT’ element in a Boolean algebra.

The postulates from P, to P, are similar to those of Boolean algebra, except for the postu-
late P;. For the set {—1, 0, 1}, the operations defined in the Boolean algebra are not equi-
strength to each other, i.e., only X-(Y+Z)=X-Y+X-Z is conserved. But if we use
another type of operation, the postulate might be retained. When the functions J4u(X, )
and fy( X, Y) are used instead of the operations (+) and (), the distributive law in the
Boolean algebra says that fy{ X, fu(Y, Z))=F4s(fid X, Y), ful X, Z)) or (X, HdY, Z))=
Jm(fa(X, Y), f4a(X, Z)). The description using mappings on a set is more general and ab-
stract, and has application to binary and ternary texture patterns.
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3. Discrete Functions

For a discrete set, we can see all functions on the discrete set. Typically, these functions
are imagined as mappings to combine elements to another element in a set. In the present
paper, we express these functions by use of ordinal arithmetic addition and multiplication.
Most of the discrete functions are nonlinear functions. Within a discrete algebra, two-varia-
ble functions are required to consider the operations on a set. Since our thoughts for discrete
algebra came from investigations of cellular automata and binary textures in texture dis-
criminations, we have to consider multi-variable discrete functions. It is very convenient if
general expressions of multi-variable discrete functions can be given. For this purpose, we
derive a recurrence form of multi-variable discrete functions, and give a general expression
of multi-variables and any number of distinct elements given by integers. General expres-
sions can give the complete set of rules of cellular automata by a single form, just like an al-
gebra. Actually, we discuss the discrete functions on the set of two and three integers. Utiliz-
ing the constructions of these, we can speculate on a theorem that specifies any case of dis-
crete functions.

3.1 On Two Elements Set

The set {0, 1} gives ordinal Boolean functions. Here we express Boolean functions us-
ing the ordinal arithmetic operations of addition and multiplication. The one-variable case
is presented in Table 1. For one-variable discrete functions, two fundamental functions ex-

Table 1 One-variable functions on{0, 1}

’ X 0 1 \ A practical form .
E T -
; [ 9o - 00 golX)=0
: | L0l X)=X
9(X) o g:1(X)
g2 1o gX)=1-X
‘ 1 g3 11 g:(X)=1

ist, and combinations of them give other discrete functions. These functions are g;(X)=X
and g,(X)=1—X because we then have go( X )=g,(X)g(X) and g;(X)=g(X)+g(X).
Note that the relations are satisfied for the values 0 and 1 only. The values 0 and 1 are the so-
lution of equations X(1—X)=0 and X+(1—X)=1, although the latter is a tautology. In
the set {—1, 1}, the two fundamental functions are g,(X)=X and g_(X)=—X. Two
other functions are given by the operation of these fundamental functions such that g,(X )=
8+(X)g+(X)=g_(X)g-(X) and g_(X)=¢g-(X)g+(X)=g(X)g_(X). The one-varia-
ble discrete functions on the set {—1, 1} are shown in Table 3. Both cases have two fun-
damental functions and show that other functions can be obtained using the two fundamen-
tal functions. This implies that a group of discrete functions has a closed form given by two
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fundamental functions.
Now we proceed to two-variable discrete functions. The whole set of discrete functions

of two variables are obtainable by using a recurrence equation, which is,

fiX, )=(1—-X)gi(Y)+Xg(Y), i, j=1,2, forthe set{0, 1}, (3.1.1)
(X, Y)=1/2(1—=X)ga(Y)+1/2(1+ X)gs(Y),
a, b=+, —, fortheset{—1,1}. (3.1.2)

The resulting values of a two-variable function correspond to the specified integer representa-
tion of subscripts in the same order. Note that @ and b also mean subscripts taken the charac-
ters + and — insetad of integers 1 and 2 in (3.1.1), e.g., = + specifies g, (Y). The results
of recurrence equations (3.1.1) and (3.1.2) are tabulated in Table 2 and 4, respectively. As
seen from Eq. (3.1.1) the factor 1 —X takes the value 1 at X=0 and takes the value 0 at

Table 2 Two-variable functions on {0, 1} by the recurrence relation f;;(X, ¥Y)=(1 —X)gi(Y)+Xg(Y).

i j i, j by binary (X, Y)=(1 X)g{(Y)+ Xg,(Y).
0 0 6000 0

0 1 00 0 1 XY

0 2 0010 X(1-Y)=X—XY

0 3 00 11 X

1 0 0100 (1—-X)Y=Y-XY

1 1 01 0 1 (1-X)Y+XY=Y

1 2 0110 (1-X)Y+X(1—-Y)=X+Y—-2XY
1 3 0111 I-X)Y+X=X+Y-XY

2 0 1 000 1-X)1-Y)=1—(X+Y)+XY
2 1 100 1 1-X)1—-Y)+XY=1(X+Y)+2XY
2 2 1010 1-X)1-Y)+X(1-Y)=1-Y
2 3 101 1 (1-X)1—Y)+X=1—Y+XY

3 0 1100 1-X

3 1 1101 (1-X)+XY=1-X+XY

3 2 1110 (1-X)+X(1-Y)=1—-XY

3 3 1111 1-X)+Xx=1

Table 3 One—variable functions on {—1, 1}

X 1 1 A practical form
g-1 -1 —1 g-1(X)=-1
" -1 1 (X)=X
9(x) g g _
g- 1 -1 | g-(X)=-X
@ 11 ae=1
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Table 4 Two-variable functions on {—1, 1} by the recurrence relation
fp(X, Y)=(1—-X)g(Y)/2+(1+X)gy(Y)/2.

a b a, bby {—1, 1} £(X, Y)=(1—X)g(Y)/2+ (1 +X)gu(Y)/2
-1 -1 -1 -1 -1 -1 -1
-1 + -1 -1 -1 1 —(I—-X—-Y—XY)/2
-1 - -1 -1 1 -1 —(I-X+Y+XY)/2
~-1 1 -1 -1 1 1 X
+ -1 -1 1 -1 -1 —(1+X - Y+XY)/2
+ o+ -1 1 -1 1 Y
+ - -1 1 1 -1 —XY
+ 1 -1 1 1 1 (1+X+Y-XY)/2
-1 1 -1 -1 —1 —(1+X+Y—XY)/2
-+ I -1 -1 1 XY
- - 1 -1 1 —1 -Y
- 1 1 -1 1 1 (I+X—Y+XY)/2
1 -1 11 -1 —1 -X
1+ 1 1 -1 1 (1-X+Y+XY)/2
1 - 1 1 1 -1 (1- X Y-XY)/2
11 1 1 1 1 1

X=1. On the other hand, the factor X takes the value 1 at X=1 and takes the value O at
X=0. The same situation is seen in Eq. (3.1.2), that is the factor (1 —X)/2 takes the value 1
at X= —1 and takes the value 0 at X=1, and on the other hand, the factor (1 +X)/2 takes
the value 1 at X=1 and the value 0 at X= — 1. These factors thus behave like a Dirac delta
function. More practically, these factors are equivalent to Kronecker deltas, although they
have a form of continuous functions. These functions, however, have meaning only at
specific points. These points define a group. Some of organized groups have the sense of
group in mathematics.

For three variables, X, Y, and Z, we proceed in a similar approach to that indicated by
Eqs (3.1.1) and (3.1.2). We introduce the following lemma for the case of three variables,

Lemma 3-1 (Recurrence form of three-variable functions on two elements set)

Let X, Y, and Z be elements on the set of two integers. There exist 24(=16) two variable
discrete functions denoted by {f5, fi, ..., fis} and two orthogonal functions of {f, 1,}
which are point functions of one variable, like the Kronecker delta. Then all the discrete
functions (256=2%*, w=23)of three variables are completely described by the following recur-
rence equation:

FAX, Y, Z)=I(X)f(Y, Z2)+ [(X)f(Y, Z). (3.1.3)

Two-variable discrete functions are given in Table 2 and 4. There we admit the existence of
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16 two-variable functions. The recurrence form has the same sense as in previous considera-
tions above: two orthogonal functions are obtainable by the combination of one-variable
discrete functions. The actual form of these two orthogonal functions is already known
above as the factors of recurrence equations (3.1.1) and (3.1.2).

3.2 On Three Elements Set

First, we consider the discrete functions on the set {—1, 0, 1}. There are 27(=3?) one-
variable functions on {—1, 0, 1} as seen in Table 5. As known from the previous subsec-
tion, the fundamental functions play an important role in organizing multi-variable discrete
functions. The fundamental functions on the set of three elements are three orthogonal func-
tions. For the set {—1, 0, 1}, these are g,, g3, and g,. The practical expression of g, g3, and
go are shown in Table 5, ie., gi(X)=(X24+X)/2,g:(X)=1—X2, and go( X)=(X?—X)/2.

Table 5 One-varible functions on {—1, 0,1}

-1 0 1 A practical form
g-13 -1 -1 1 g-13X)=-—1
g-12 -1 -1 0 g p(X)=—-1+(X+X?/2
g-u -1 1 1 | g_uX)=X2+Xx—1
g-10 -1 0 —1 g-10(X)=—X?
9o 1 0 0 g-o(X)=(X~X?/2
g-3 -1 0 1 g-s(X)=X
g1 -1 1 -1 g-AX)=1-2X2
J-6 —1 1 0 g (X)=—1+(3BX*—~X)/2
g -1 1 1 g (X)=1+X—-X?
g 0 —1 -1 g X)=—1+(X2 X)/2
g-3 0 -1 0 g-s(X)=X*—1
g_» 0 —1 1 g (X)=—1+(3X*+X)/2
g 0 0 -1 g (X)=(X2+X)/2
9(x) 9o 0 0 O 9o(X)=0
g 0 0 1 $i(X)=(X?*+X)/2
g2 0 1 —1 g (X)=1—(3X2+X)/2
g3 0 1 0 g:(X)=1—-X?
s 0 1 1 g4(X)=1—(X2—X)/2
gs 1 -1 —1 gs(X)=1—X+X?
Js I —1 0 9s(X)=1-(3X*—X)/2
97 1 -1 1 g(X)=2X>—1
9s 1 0 -1 gX)=—X
9o 1 0 0 go(X)=(X?*—X)/2
Jio 1 0 1 g1(X)=X?
gn 1 1 —1 gnX)=1-X—-X?
912 1 1 0 gp(X)=1—(X+X%/2
g3 1 1 1

gi3(X)=1
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The other discrete functions are represented by a combination of these three functions in the
following form,

gi(X)=alg(X)+alg:(X)+aig:(X), (j=—13,—12,---,0,---,12,13), (3.2.1)

where the coefficients a4, a4, and a4 respectively take appropriate one of the integers { —1,
0, 1}. These functions are identical to the point functions mentioned in the previous section.
The point functions required are three orthogonal ones {I}, 5, I3} in a set of three integers.
When we consider the logic NOT for the set {—1, 0, 1}, the definition of the Boolean al-
gebra becomes meaningless. For this case, it is better to define the logic NOT by saying that
there exists a pair concept of elements where ‘NOT” indicates picking the opposite element
of the pair. If we choose two functions in discrete functions on { —1, 0, 1} suitably, then we
can keep the definition of logic ‘NOT’ in the Boolean algebra. An example for a pair of dis-
crete functions realizing the Boolean definition of logic NOT is X4+ Y~XY+(1—X3)(1~-
Y?) and X2Y2+4+(1 —X2)(1 — Y?). The former is the modification of logic OR, but latter is
different from the logic ‘AND’. Both have the same modification term (1 —X?2)(1 — Y?2).
Now we organize the recurrence formula to obtain the two-variable discrete functions on
{—1,0, 1}. The procedure is similar to Eqgs (3.1.1) and (3.1.2). The recurrence equation for
two-variable discrete functions { fi; } is:

SiX, Y)=1/2(X* = X)g(¥)+ (1 = Xg;,(Y)+1/2(X*+ X)gu(Y)
=g9(X)9:(Y) +¢3(X)g;(Y) +9:(X)g:(Y),

G, j, ke {—13, =12, -, =1,0, 1, ---, 12, 13}). (3.2.2)

The latter form is kept on the discrete functions of the set {0, 1, 2} shown in Table 6.

We discuss the specificity of using the integers — 1, 0, and 1. These integer satisfy the re-
lations X2=X for the set {0, 1} and X3=X for the set {—1,0,1} or {—1, 1}, where X
denotes an arbitrary element of each set. This characteristic of these values reduces higher-
order powers of X to the lowest possible ones. But other choices of integer sets permit any
type of functions using higher order power of X. An example is organized on the set {0, 1,
2} (see Table 6). We show the results using the quadratic and cubic forms of the functions.
This means any order of powers of the real functions can be used to organize a group of dis-
crete functions, but the form of real functions does not have any meaning concerned with
mathematics. The choice of the form of function is determined by the physical meaning of
that choice. In mathematics, the following lemma has a significant meaning:

Lemma 3—2 (Recurrence form of three-variable functions on three elements set)

Let X, Y, and Z be elements on the set of three integers. There exist 19683(=3%, w==32)
two-variable discrete functions, denoted by {f;, fi, ..., fisss2} and three orthogonal func-
tions of {Iy, I, I}, which are point functions of one-variable, like the Kronecker delta.
Then all the discrete functions (196833=3%, w=33) of three variables are completely
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Table 6 One-variable functions on {0, 1, 2}
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X 01 2 Quadratic form Cubic form }

9o 0 00 go(X)=0 0
| 9 0 01 g(X)=(X*—X)/2 (X3-X)/6

| g 0 0 2 g X)=X—-X CX3-X)/3
g3 010 g;(X):*X2+2X —(X3—-4X)/3
da 01 1 gi(X)=—(X2—3X)/2 —(X*-7X)/6
gs 01 2 gs(X)y=X X
g6 020 ge(X)=—2X2+4X —2(X3—4X)/3
¢ 0 2 1 g(X)=—(3X2—17X)/2 -(X3-5X)/2
gs 0 2 2 g(X)=—X2+3X —(X?-7X)/3
% 100 Go(X)=1+(X2—3X)/2 14+ (X3—-7X)/6

I 1 01 GoX)=1+X2-2X 1+(X?—4X)/3

[ gn 102 | gu(X)=1+3X?-5X)/2 1+(X3—-3X)/2

L gn 110 g(X)=1—(X2—X)/2 1—(X*—X)/6

g(Xx) 913 IO guX)=1 1

L g 112 guX)=1+(X2—X)/2 1+(X*—X)/6
s 1 20 g1s(X)=1—(3X?—5X)/2 1—(X*—3X)/2
916 1 21 Gie(X)=1—(X2—2X)1—(X?—4X)/3
g 1 22 gu(X)=1—(X2—3X)/2 1-(X*~7X)/6 |
Jis 200 ge(X)=2+X2-3X 2+ (X3-1X)/3 |
i 2.0 1 giu(X)=2+(3X2-7X)/2 2+ (X3—5X)/2 |
920 2.0 2 | gaX)=2+2X>-2X) 2+2(X3—4X)/3 i
g2 210  guX)=2-X 2—-X
92 21 1 gn(X)=2+(X2—-3X)/2 2+(X3—7X)/6
923 2 1 2 | guX)=2+x2-2X 2+(X3—4X)/3
924 220 | guX)=2+X-X 2—(X*—X)/3
gas 2 21 } gas(X)=2— (X2~ X)/2 2 (X~ X)/6
0 222 gux)=2 2

described by the following recurrence equation,

FiuX, Y, Z)=1(X)fi(Y, Z)+ L(X)fi(Y, Z) + L(X)fi(Y, Z),

(i, Jj, ke {0, 1,2, -, 19682}).

(3.2.3)

[Proof] Two-variable functions produced by the equation above are independent of
each other. Each point function is orthogonal to the other. This means that

Io( X)L (X)=L(X)L(X)=I(X)o(X)=0,

and also means each orthogonal function takes the value 1 at the specified value. These are
three for the three-element set. Any triple combination of independent functions determines

the whole discrete function space of three variables X, Y, and Z. [End of proof]
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3.3 Generalized Description of Discrete Functions

We now generalize the results obtained in subsections 3.1 and 3.2. When we apply
mathematical induction to the results of the previous subsections, the following lemmae are
established.

Lemma 3-3 (Recurrence form of n-variable functions on two elements set)

Let X, X3, ..., and X, be elements on the set of two integers, and let N be the number
of all n-variable discrete functions on the set. There exist N (=2%, w=2") n-variable discrete
functions denoted by {fy, fi, ..., fv—1}, and two orthogonal functions of {fy, I;} which are
point functions of one variable, like the Kronecker delta. Then all N? discrete functions of
n+1 variables are completely described by the following recurrence equation,

Fi(X1, X, -y Xoy Xus 1) =L (Xne Vi(X1, Xay o, X)) LG )fi(X0, Xay -y X)),
(,je {0, 1,---,N—1}). (3.3.1)

Lemma 3-4 (Recurrence form of n-variable functions on three elements set)

Let X, X, ..., and X1 be elements on the set of three integers, and let N be the num-
ber of all n-variable discrete functions on the set. There exist N (=3*, w=3") n-variable dis-
crete functions denoted by {fo, fi, ..., fv—1}, and three orthogonal functions of {Zy, I;, I}
which are point functions of one variable, like the Kronecker delta. Then all N discrete func-
tions of n+1 variables are completely described by the following recurrence equation,

Fije(X1, X3, -y Xy Xow1) =Lo(Xnr )i Xs Xy 5 Xo) H (X )i(X0, Xy o5 X))
+ L(X+)fi(X1, X, ooy X, (i, j,ke{0,1, -, N—1}). (3.3.2)

The above considerations allow us the following theorem:

Theorem 1 (Recurrence form of n-variable functions on m-element set)

Let X;, X5, ..., and X,,. be elements on the set of m integers, and let NV be the number
of all n-variable discrete functions on the set. There exist N (=m¥, w=m") n-variable dis-
crete functions denoted by { /5, f1, ..., fw—1}, and m orthogonal functions of {fy, I}, b, ...,
I,_,} which are point functions of one variable, like the Kronecker delta. Then all N7 dis-
crete functions of n+ 1 variables are completely described by the following recurrence equa-
tion,

Ejkm/(Xl, Xz, Ty Xn, Xn+1)=Io(Xn+1)ﬂ(X1, X2, "',Xn)+[1(Xn+1)fj(X1, Xz, B Xn)
+IZ(Xn+l)fk(Xl) XZ’ Y Xn)+ +Im—1(Xn+1)fl(X1, XZ) "'»Xn),

(I9J9ks,le {0,1,,N_1}), (33.3)

where [ signifies m-th suffix.



Discrete Algebra on Cellular Automata and Binary Textures

[Proof] There exist m™ one-variable discrete functions on the m elements set. The m or-
thogonal functions can be constructed by a combination of these distinct functions. Two-
variable discrete functions be generated by use of m orthogonal functions and m™ one-varia-
ble functions. The recurrence form of three variable functions can be organized similarly to
lemmae 3-1 and 3-2. Mathematical induction leads the recurrence form between n and n+1

variables. [End of proof1]

4. Applications of Discrete Algebra to Cellular Automata and
Binary Textures

One rationale for studying cellular automata was to describe soliton-like behaviour [1].
A second objective of our research has been the study of human discrimination of binary tex-
tures [3]. Both studies involve aspects of cellular automata. Usually three-variable functions
are used for these studies, so that the general description of three-variable discrete functions
is very convenient for us. The lemmae 3-1 and 3-2, and equations (3.1.1), (3.1.2), (3.2.1),
and (3.2.2) give the following form of three variable discrete functions:

For the set {0, 1},

FX, Y, Z)=A,(1-X)1=Y)1=Z)+A,(1 - X)(1 = Y)Z+As(1- X)Y(1-Z)
+A(1=X)YZ+AsX(1— YY1 - Z)+ A X(1-Y)Z
+AX(1—-Y)Z+AsXYZ,

Aie {0, 1}, (=1,2, -, 8), (4.1

for the set {—1, 1},

FX, Y, Z)=A,(1-X)1-Y)1—-2)/8+A.(1-X)1=Y)1+Z)/8
+A,(1=X)1+ V)1 -2Z)/8+A;(1—X)1+Y)(1+Z)/8
+A0+X)1-Y)1—-2Z)/8+As(1+X)(1-Y)(1+Z)/8
+A4,(1+X)1+ YY1 —-2)/8+ A X(1+ X)(1+ Y)(1+Z)/8,

Aie {—-1,1},(=1,2,---,8), (4.2)
and for the set {—1,0, 1},

FX, Y, 2)=A(X*—X)Y*—Y)Z*—Z)/8+ A(X*— X)Y*-Y)(1-2%)/4
+A; (X2 = X)YP—YNZ*+Z)/8+AuX*=X)1—-Y*)Z*—Z)/4
+AX = X)Y1—-Y)(1-Z3/2+As(X*—X)1 - Y)(Z*+ 2Z)/ 4
T+ A X = X)YY+ Y)NZ2—Z)/ 8+ As(X =X} Y>+ )1 —ZY)/4
T A X=X NY*+YNZ*+Z)/8+ A1 (1 - X ) (Y- Y)Z*—Z)/4
+AL(I-X )Y =-YV)(1-2Z%) /24 A1 —X)Y*-Y)NZ*+ Z)/4
+A(1-X)(1-Y*)(Z*-2)/2+A(1—XH(1-YH1-Z?)
+AsA=X)(1 =YW Z2+Z)/2+ A(1 — XY+ YNZ*—~Z)/4
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+ A1 =X)Y+ YY1 -ZD)/2+As(1 =X WY+ YNZ*+Z)/ 4
+ALXC+HXNY2 =Y NZP—2Z)] 8+ An(X*+ X )Y —=Y)(1—Z%) /4
FAR(X 2+ XY =Y NZ2+ 2Z) 8+ An(X2+ X)1 =Y NZ?*-2Z)/ 4
+ AKX+ X)1 = Y1 -ZY) )2+ Au(X 4+ XA -YNZ* +2)/ 4
+ Ay (X P+ XNY2+ YNZP = 2Z)/ 8+ Awn(X P+ XY+ Y1 =2 /4
+An X2+ XY+ YWZ2+Z)/8,

A {-1,0,1}, @(=1,2,--,27) (4.3)

These forms include all possible three-variable discrete functions, as we can change the per-
mitted coefficients, 4;, 4,, ..., Ax (K=8 for two integers and K=27 for three integers), in
any integer of the set. We introduce a coefficient vector A4, that has elements which are
coefficients, 4, As, ..., Ax (K=8 for two integers and K=27 for three integers). For exam-
ple, for the two-element set, this vector A4 is

A:(Ah A29 A3a Ad! AS: A61 A?s AS)) (44)
and for three-element set, it is
A=(A,, Az, As, ..., Ass, Asg, A7) 4.5)

A coefficient vector A is identical to a rule of cellular automata, because each factor is a
point function which take the value 1 at specified value of (X, Y, Z). For the set {0,1}, an
assignment of 4 to an integer gives Wolfram’s rule number [6].

In a cellular automaton, the dynamics of the state of whole elements can be analyzed.
The local state of elements produces an evolving temporal pattern of the overall state of the
elements, viz. patten dynamics. For the three-neighbour case, the temporal development of
each cell state can be described by the following abstract form:

S(t+1)=F(S'(t), S*(®), S"(t)), 4.6)

where S(¢) means the state of a certain cell in the system at time ¢, superscripts signify the
difference of specified cells, and F is a function defining how to develop the cell states tem-
porally. We call Fa rule, and this is equivalent to one of three-variable discrete functions dis-
cussed here. The rule F can be expressed as

F=A-P, 4.7

where A4 is the coefficient vector discussed above, and P is the point function vector whose
elements are triple products of orthogonal functions. The explicit expression of P takes the
following form:

P=(pi, P2, D3, P, D5, Dés P7, Ps), for two-element set, (4.8)
P=(p1, P2, D3 +-+» P25, P2» P27),  for three-element set, 4.9

where each element of P in sets of two integers (for (4.8)) is defined as follows,
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p1=L(X)o(Y)o(Z),
P3=10(X)11(Y)10(Z),
ps=0L(X)(Y)(Z),
pr=L(X) (Y (2),

p2=1(X)o(Y)1(Z)
Pa=1/(X)L(Y),(Z)
ps=L (X)L (Y)(Z)
ps=L(X)(Y)(Z),

and elements of P in sets of three integers (for (4.9)) are

=1L (O(Y)IN(Z), p=L(X)(Y)(Z), ps=I(X)I(Y)(Z)

pa=L (X)L (Y)W (Z),
pr=LX)L(Y)(Z),
Po=L(X)(Y)(Z),
pu=LX)(Y)(Z),
Pie=TI(X)(Y)(Z),
Piv=LX)o(Y)o(Z),
p2=LX)L(Y)(Z),
D =L(X)L(Y)(Z),

ps=L(X)\(Y)(Z),

ps=1(X)L(Y)(Z),
pu=L(X)(Y)(2),
pu=LX)(Y)(Z),
pu=L(X)L(Y)(Z),
P0=LX)(Y)(Z),
pu=LX)(Y)(Z),
P=LX)L(Y)(Z),

ps=1L(X)(Y)L(Z)

Ds=1o(X),(Y)(Z)
Pe=LX)(Y)(Z)
Pis=L{X)I(Y)L(Z)
Pis=1(X)L(Y)(Z)
Pa=L(X)(Y)(Z)
Pu=L(X)(Y)(Z)
Pr=L(X)L(Y)L(Z),

(4.10)

(4.11)

respectively. Since P is fixed, F varies due to the change in 4. Both F and A refer to the rule
of cellular automata as far as P is the vector consisting of point functions. The expression
(4.7) is quite similar to the expression obtained from matrix approach to the rules [1]. The
point function vector P is identical to vS~! of ref. [1]. Rewriting each element of vS—! shows
a clear correspondence to the element of P. When the vector A4 is changed by a quantity
which reflects the state of system, the system has a temporal change of rules which called
’rule dynamics’ [7].

Binary textures, which are used in the study of human texture discrimination, consist of
patterns of square pixels. Each pixel is coloured white or black. In such a texture, white and
black signify two states. The assignment of white or black to two integers is arbitrary. It is
possible to use either {0, 1} or {—1, 1}. The isotrigon textures, sets of textures having identi-
cal average third-order (triple) correlation functions [8], are of particular interest, because
human can easily discriminate collections of such textures, thus indicating that we exploit in-
formation about higher-order (= 4th) correlations within images. Primate cortical neurons
have been shown to be sensitive to these higher-order correlations [9]. The isotrigon textures
used to date in studies of texture vision are made by a recursion rule employing triple
products of pixels [3, 10] using the set of integers {—1, 1}. The use of {—1, 1}sets the
average brightness of the texture at zero. This is suitable when considering real visual sys-
tems that encode images in terms of positive and negative contrasts.

The discrete functions described above indicate the existence of isotrigon textures other
than those used to date [3, 10]. For example, patterns containing pixels with the intermedi-
ate brightness (gray), together with black and white pixels, can immediately be assigned to
{—1,0, 1}. These textures can be obtained by using the discrete functions described above
for three-integer sets. Note that the three-variable discrete functions include the one- and
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two-variable discrete functions less than N. In the n-variable case, we can consider any phys-
iological expectations for texture discrimination mechanisms. Thus, apart from mathemati-
cal interest, the present study opens the way to provide a wider range of stimuli that are
potentially useful for the study of human texture discrimination mechanisms.
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