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Synopsis: We show that soliton-type effects, such as fusion, birth of new solitons, and elastic colli-
sions, are possible for some cellular automata with quite simple nonlinear evolution rules.

1 Introduction

Various important physical effects are described by nonlinear equations. For example,
optical fibre pulse propagation is found from the nonlinear Schrodinger equation (NLSE).
In this case, bright solitons are formed because the nonlinear self-focussing counteracts the
dispersion or diffraction of the light. Although partial differential equations (p.d.e’s) are
used for most physical applications, cellular automata (CA) provide the possibility of an
different viewpoint [1] for simulating physical behaviour. The alternative nature of this ap-
proach has been stressed in [2]. Cluster formation, with reference to biological systems is stu-
died in [3], while the use of reversible automata for statistical mechanics is considered in [4].
CAs can model the motion of bacteria as they seek to congregate [5].

In [6], T. Tokihiro et al. use a 2-valued filter CA which requires counting the number of
‘ones’ from the left in order to determine the sequence evolution. In their case, an isolated se-
quence of 7 ones travels to the right with velocity #. Due to the different speeds, collisions
are possible, and then each sequence continues at its original velocity, #, but it has ex-
perienced a ‘phase shift’. This behaviour resembles solitons of the KdV equation, where soli-
ton velocity depends on amplitude, so that high solitons can overtake low ones, also produc-
ing a ‘phase shift’. The authors of [6] relate their filter CA to the KdV through the Lotka-
Volterra equation, an integrable discretization of the KdV. This work is important in that it
links CAs with p.d.e’s through a limiting procedure.

However, it is probably more realistic physically to use local rules rather than filter
CAs, since solitons of p.d.e’s represent localized effects.

We mention the nonlinear Schrédinger equation, with a generalized nonlinearity law,
as a commonly used model:
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i!//z+7 vutwN(w1?)=0. (1)

This equation, and others related to it, have been discussed [7]. When applied to propa-
gation in optical fibers,  is the field, z is the (normalized) distance along the fiber and ¢ is
the retarded time (meaning that the reference frame is moving at the pulse group velocity).
On the other hand, for spatial propagation in planar structures, z is the (normalized) dis-
tance along the waveguide, while ¢ is the transverse dimension. Thus the light intensity is
{w2, and the form of nonlinearity means that the function N depends on the intensity only.
If Nis the identity function, then we have the common Kerr-law behaviour and a mathemati-
cally integrable system which supports solitons. In this case, solitons can pass through each
other and suffer only a phase shift and no energy radiation loss. The exact mathematical
description of this process, together with a proposal of using such an ‘X-junction’ as an opti-
cal switch, was given in [8].

A soliton here is formed when the nonlinearity cancels the dispersion. If we take the
Kerr-law form for the nonlinearity, then the exact pulse shape required is

w=Ffexp (ig°z/2)

where f=q sech(qt) for any value of g. For this required shape, if we divide eqn. (2) through
by v, we see that the dispersion (diffraction for spatial case) term,

Vo < 1 .
=q*| ——sech (gt)
Cy) 2
is cancelled by the evolution term, iy./w= —g?/2 acting with the nonlinearity |y |2=
g*sech?(qt).

All real materials saturate if the intensity is sufficiently high, so to study non-elastic colli-
sions of soltions, it is convenient to use a form of N which includes saturation, e.g.

lyl?

—— 2
1+ylyl? @

Thus at low intensity, the index increases linearly with intensity, while at high intensities, it
approaches a constant. Solitons in saturable materials have been studied using p.d.e’s in [9]—
[11]. For any form of nonlinearity other than the Kerr-law noted above, the solitons do not
pass through each other unscathed.

2 Nonlinear discrete dynamics

We seek to present discrete cellular automata which demonstrate some of the above fea-
tures from the continuous equations.
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We now present our simplest model which demonstrates some of the observed effects,
such as soliton fusion, using a nonlinearity in the cellular automata rule. The rule is defined
as follows. The element m(j, k), which is the kth element in row j, is determined by the ele-
ment k in row j—1, viz. m(j—1, k), and the 2 neighbours of that element, viz. m(j—1,
k—1)and m(j—1, k+1). We have

m(j, KY=m(j—1, k)+m*(j—1, k)+ Floor
1
X(;[m(j—l,k—1)+m(j—1,k+1)]—m(j—l,k)>, 3)

for j=2, 3, ---. The term m?(j — 1, k) is the nonlinear one. It would be analogous to |y|? in
the continuous case. The function Floor(x) indicates the largest integer less than or equal to
x. The term including this function is analogous to a second derivative (viz. the dispersion or
diffraction in optical propagation) and has the effect of making a cell value ‘closer’ to the

values of its neighbours.
The input sequence (j=1) assumes a localized or ‘pulse-like’ form. Thus we need

sufficient zeros to the left and right of the ‘pulse’. As with solitons from differential equa-
tions, the nonlinearity here acts as a ‘glue’ holding some pulses together.

2.1 Solitons

A soliton is a sequence which maintains its form, perhaps with lateral translation, on
evolution. With this rule, we find that

¢-0,0,0,1,0,0,0, )

is a soliton. This occurs because this pattern remains invariant on iteration. This is also true
for any collections of ‘ones’ separated by at least 2 ‘zeros’, eg.

(0,0,0,1,0,0,1,0,0,0, 1,0,0, )
Another interesting soliton is
0,0,0,1,1,0,0,0,0, ---) )
The basic soliton unit which moves to the right with unit velocity, which we label ‘R’, is
0,0,0,1,-1,0,0,0,0, )
Thus, its evolution is given by

0001 -1 0 0 060 -
0000 1 -1 0 00 -
0000 0 1 -1 00--[
~0000 0 O 1 —-10--

&)

etc. A NLSE soliton has a fixed phase across it. If we describe the above cell soliton as hav-
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ing zero phase, then the one with a phase of 7 is its reverse, and travels in the opposite direc-
tion. It has velocity of —1, and we label it ‘L’:

-0 0 0-1 1000 -
-0 0-1 1 0000 -
-0 0-1 1 0000 |
0—-1 1 0 0000 -

(6)

etc.
2.2 Soliton fusion

Demonstrations of the fusion of solitons and the ‘birth’ of new solitons have been given
in [12] and [13]. This effects indicate considerable inelasticity, showing that the differential
equation representing the system is far from integrable.

We find that our model system can describe this fusion situation. Fusion occurs when a
left-moving soliton collides with a right-moving one. To achieve this, we intially need to
have at least 2 zeros between the element solitons:

01 -1 0 0 0 0-110-:-
00 1 -1 0 0-1 100 -
00 0 I -1-1 1 000:--

U
00 0 0 I 1 0 000 -
00 0 0 1 1 0 000:--
00 0 0 I 1 0 000

Thus the 2 solitons have fused to form a single soliton of the form, of (4) above, and
this ‘propagates’ forever.

2.3 Birth of solitons

Our rule is also capable of showing how a single linked pulse can give rise to the birth of
new solitons. Here is an example of it:

001 =1 —-1-1-1100-
000 1 0 0 1000
000 1 0 0 1000 -
+000 1 0 0 1000 -

®

Thus the two individual ‘daughter’ solitons then continue forever. In physical systems 2
solitons will often continue separately or fuse, depending on their relative phases, as in our
examples. This can be seen, for example, in fig. 2, parts (a) and (b) of the experiment in [13].

3 Soliton effect 3—level system

We now construct a system where each element takes on one of three levels (here —1, O

— 4 —
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and +1). As in the system described in the earlier section, each element depends on its value
and that of its 2 neighbours in the previous stage. For conveience, we write a=m(j—1,
k—=1),b=m(j—1, k) and c=m(j—1, k+1). The input (0, 0, 0) must produce a zero output
for the new centre cell to ensure localization, so we need only 33— 1=26 linearly-indepen-
dent combinations of (a, b, ¢) to provide all the required coefficients.

Thus we write

f=ax,+ bxy+ cx; + a*xs+ bPxs + cxs + abx, + acxs + bexo
+a’bxo+ a’cxy + ab’xin+ brexis +acixis+ betxs + a?bixi + atcixi, + bicixs + abexs
+ a?bPcxy+ ab*c e + a*bcixy, + aPbic Xy + abexys + aPbexss + abcxs. )

In other words, we have
f=vx
where v is the vector formed from (the 26) coefficients of the x’s,
v(a, b, c)=(a, b, ¢, @?, ---, ab’c),
while x is the vector
X=(X1, X2, X3, " X26)-

As noted above, no constant term is required in this form. Now, let p; be the value re-
quired for the ith mapping, when the ith value of (a, b, c) is substituted into eqn. (9), where
the triplets (a, b, c) are arranged starting from p,=f(—1, —1, —1), p,=f(—-1, —1, 0),
etc., and ending up with p,s=/f(1, 1, 1). Thus each p; is equal to —1 or O or 1. The (26 x26)
matrix S is formed form the elements v as follows:

v(—-1, -1, —1
v(=1,—1,0)
v(-1,—1,1)

S= v(0, 0, —1) . (10)
v(0,0, 1)

v(1, 1, 0)
v(1,1, 1)

Thus Sx=p. We choose convenient values of the elements of vector p from the numbers
{—1,0, 1}.
We can obtain interesting physical effects by choosing the vector p in a suitable way. We

note again that f(0, 0, 0)=0, so f(0, 0, 0) is excluded from the above numbering, as seen in
the middle of the matrix (10).

We thus have



x=S""'p
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and the inverse of matrix S, viz. S~!is given in Table 1.

an
(12)

1
2 b

)

We can simplify eq. (9), using eq. (12) to get the expression for the new centre element:

1

2

,0,0,0,0,0,0,0,0,0,0, 1,0, 0, —
90’03

1

2

1

2
90’_

TABLE 1. Inverse of matrix S.
p=@0,0,1, -1, -1,0,0,0,1,0,1,1, —-1,0,0,1,1,1,1,0,0,0,1, 1, 1, 0)

To get the soliton effects, we use the following form for the vector p

3.1 Period—2 solitons
As noted above, by inverting the matrix S, we find the required vector x, i.e.:
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1 1 1
f=?(a+c)—[7 (a2+c2)—b2}+azc2-—? ab’c(a+c+ac+1), 13)
i.e.
1 1 2 2,2 1 2
f= > a(l—a)+ 3 c(l—c)+b°+a’c*— > ab’cla+c+ac+1).

The term 1/2(a?+c?)—b? in eqn. (13) corresponds to a second derivative of intensity term.
We note that f depends only on 42 and not b alone. This is analogous to the nonlinearity de-
pending only on intensity in the NLSE. For any combination of the 3 input values, this rule
always produces a new sequence consisting of terms with these values also. It is not identical
to the rule considered above, but it produces related soliton-type effects, and the advantage
of this approach is that any rule can be programmed.

For example, we have soliton sequences (---0, 1, 0---) and (---0, 1, 1, 0--*). A new pattern
is the ‘period—2 soliton’(see [7] for p.d.e. examples), which is a soliton which returns to its
original form every second iteration. This can be started with the sequence (---0, 0, 1, 1, 1, O,
0---), and it evolves to (---0, 0, 1, 0, 1, 0, 0--") and back to (-0, 0, 1, 1, 1, O, 0---) etc.

We still retain the basic soliton unit moving to the right (R), viz.

( O’ 03 Oy 1) _1’ 07 Oa 0’ 09 )’
and the left-moving soliton (L) viz.
(-0,0,0,-1,1,0,0,0,0, ).

If there are an even number of zeros between these 2 solitons, then they collide as before to
fuse and produce the (---0, 1, 1, 0---) soliton.

If there are 4 or more isolated ones in a sequence, then we find the ‘birth’ of a ‘daugh-
ter’ soliton at each end of the sequence, e.g.

(¢-0,01,1,1,1,0,0--)y — (- 0,0,1,0,0,1,0,0--")
-— (---0,0,1,0,0,1,0,0 ---).
3.2 Elastic collision

We now present a rule which provides for the well-known soliton elastic collision. This
is the hallmark of an integrable system, and it indicates that no energy is lost in the collison.
Here the L and R solitons pass through each other, suffering only a phase shift.

pz(O, 0’ 1s _1’ _19 07 Oy 0, 1> 0’ 19 19 -l’ 0’ 0, 1) 11 1) 1; _19()’ 09 09 1: 130) (14)

Again, inverting the matrix S gives us the required vector x:
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NSNS 1 1 1 1 301
X—<7’097’—?>1’ _?soa—?O;Oy—790:07_Iyoyosj)osgs
3 3 1 3 1 1 3
—g,—g,g,—g,g,g,—g) (15)

This produces
f=i (@a+c)— 1 (@*+c?)=b*
2 2
1
+§ acléac—2—2a—2c+b(1+a—3b—3ab+c+ac—3bc—3abc)]. (16)

Here the first term is the average of the neighbours while the second is a type of dispersion.
Here is the elastic collision. It requires an odd number of zeros between the L and R soli-

tons intially.

-0 1-1 0 0 0—-1 10 -

0 0 1-1 0-1 1 00 -

-0 0 0 1—-1 1 0 00

-0 0 0 0—-1 0 0 00| 17)
-0 0 0—-1 1-1 0 00 -

-0 0-1 1 0 1—-1 00 -

“0-1 1 0 0 0 1 —-10--

Thus the L soltion continues moving to the left after the collision, while the R soliton
moves to the right. Each has suffered a unit shift in ‘phase’ relative to the position it would
have had, if there was no collision.

If there are an even number of zeros between the L and R initial solitons, then we ob-
tain fusion, as in the earlier cases. However, we do not obtain the breather solution here,
since the sequence (0, 0, 1, 1, 1, 0, 0) evolves to (0, 0, 1, 0, 1, 0, 0) and remains as (0, 0, 1, 0,
1, 0, 0) forever.

4 Discussion
We now rewrite eqs. (13) and (16), and get the following expression which is useful in
discussing the changes caused by the replacement of values corresponding to p,y=f(1, —1, 1)
from 0 to —1, and changing p,;=f(1, 0, 1) from 1 to 0. The result is as follows:

f=b+% (@+c—2b)(1 —acX(b))—% (@*+c*—2b*)—abc—acY (b)+a’c*Z(b)

For eq. (13), X, Y, and Z are X=»52%, Y=1/2b? Z=1—1/2b2. These are invariant with
respect to b changing sign. For eq. (16), we have
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X—1+b 3 b
2 27

Fﬂ+£ iw
2 2

Z=1+ b_1 b?
6 27

The main changes occur in X (b) and Y (d). In the case of eq. (13), X(b)=1,0, 1 for b=—1,
0,1,and Y(b)=1/2,0, 1/2 for b= —1, 0, 1, respectively. On the other hand, the case of eq.
(16) yields X(b)=—1,1,0for b=—1,0,1and Y(b)=—1, 1, 1 for b=—1, 0, 1, respective-
ly.

5 Conclusion

We have demonstrated typecal soliton behaviour of non-integrable systems with very
simple local rules with one or more nonlinear terms. These give some insight into the way in
which even a simple nonlinearity can act to keep a pulse together or cause it to separate into
distinct pulses, depending on the relative ‘phase’. We have also demonstrated a ‘lossless’ soli-
ton collision, with pulses passing through each other.
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