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Abstract: One-dimensional fractal map (1-d fractal map) is consisting of submaps which arranges
self-similar manner in the definition region of map. The 1-d fractal maps have discontinuity in their defini-
tion region. The orbit generated by recurrently applying of the 1-d fractal map for the mapping variable
means the dynamics of 1-d fractal map. The complicated intermittent orbits are generated by the 1-d frac-
tal M map. This implies chaotic itineracy of the 1-d fractal map.

1. Introduction

The idea of one-dimensional fractal map (1-d fractal map) was obtained by the investi-
gation of neighborhood-three cellular automata with two states. We have studied the pat-
tern dynamics of cellular automata in the view point of pattern-to-pattern mapping. In
neighborhood-three cellular automata, pattern dynamics is governed by a local rule which
determines the state of each cell at time # using the states of neighborhood-three cells around
it and itself at time #— 1. Although local rule is applied for whole cells array in the same way,
the pattern of cells’ states is different depending on their initial states. If one want to know
the relation between whole cells’ patterns at time ¢ and ¢+ 1, it is suitable to introduce some
scalar variable corresponding to the pattern of whole cells’ states. For this purpose, we in-
troduce rational number of binary cardinal which is corresponding to one-dimensional ar-
ray of cells’ states at time ¢ defined as

C(f)=; 27Si(r)

where £ denotes a rational number, S; the state of i-th cell, » the number of cells composing
the system of cellular automata, respectively. As seen from this definition, the correspon-
dence between a rational number and a pattern of 1-d array of whole cells’ states is one-to-
one.

The mapping of pattern-to-pattern in cellular automata of neighborhood-three shows
fractal nature. Wolfram touched on pattern-to-pattern mapping as a global nature of the
pattern in his review article [1]. The mapping of pattern-to-pattern can be represented by
utilizing the rational number £(¢) so that the mapping f : £(¢)—&(¢+1) is rational one. This
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Fig. 1 Examples of Pattern-to-Pattern Mapping

Pattern-to-pattern mappings for Wolfram’s rules (from 60 to 89) are shown. Global nature of pattern
shows fractality.

mapping is a subset of rational numbers. Every point of mapping for pattern is isolated. The
examples of pattern-to-pattern mapping (global nature of cells’ states) are shown in Fig. 1.

Even though the system size n becomes infinitely large, namely, oo, the set of points in
mapping is measure zero in Lebegue sense, or has only the density of countable number at
the most. We intended to enlarge an isolated point into a local line, namely, to extend meas-
ure zero mapping into measurable one. To call the map as a fractal map, we also demand
self-similarity [2] of mapping.

In the next section, we show the procedure to construct the 1-d fractal map using scal-
ing and location shift transformations. In section 3, we consider dynamics using 1-d fractal
maps. More complicated orbits are generated 1-d fractalmaps, compared with the orbits by
the ordinal 1-d maps.

2. Construction Procedure of 1-D Fractal Map

The essential nature of fractal is the self-similarity [2]. Rescaling and embedding of any
figure realize the fractal nature. We therefore use scaling transformation and location shift
transformation to construct a 1-d fractal map.



One-Dimensional Fractal Map

Let consider 1-d map f(x) defined in the interval I=[0, 1]. This is sufficient to realize
any 1-d map in any interval by appling scaling and location shift transformations for the
1-d map defined in the interval I. The 1-d mapping is represented as f: I=1 or y=f(x), (x,
yel).

2.1 Scaling transformation
The scaling transformation S(u, v) applied for a 1-d map f(x) is defined as follows:
S(u, v)-f(x) = Frcaelx) =V (x/ 1) 2.1

where u, v are scaling factors for x and y directions, respectively. Schematical illustration
is shown in Fig. 2. After application of scaling transformation, the mapping becomes
wate - ()~ yel(v), A =[0, ul, I(v)=[0, v]). When u<1 and v<1, the mapping is con-
tractive.

0 | 1

Fig. 2 An Hlustration for Scaling Transformation

2.2 Location shift transformation

The location shift transformation L(a, &) applied for a 1-d map f(x) is also defined as
follows:

L(a, b) - f(x)=fpis(x)=f(x—a)+ b, 2.2)

where a, b denote location shift coordinate (a, b) for the origin (0, 0) of original function
f(x) defined in the interval 1.

2.3 Embedding transformation
We call both application of scaling and location shift transformations for an original
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1-d map f(x) as the embedding transformation. Then the embedding transformation is ex-
pressed as

L(a, b)-S(u, v)-f (x) =fis(x)=vf(x—a)/ u) +b. (2.3)

The mapping embedded-transformed becomes fis: xel(u, a)—yel(v, b), (4, a)=|a,
u+al, I(v, by=[b, v+ b]). Notice that the application order of scaling and location shift
transformations is trivial because of L(a, b)-S(u, v)-f(x)=S(u, v)-L(a, b)-f(x). The il-
lustration of embedding transformation is depicted in Fig. 3.

0o ] 1

Fig. 3 An Illustration for Location Shist Transformation

2.4 The procedure to construct a 1-d map

Using embedding transformation, we can construct a 1-d fractal map. The 1-d fractal
map is a kind of discontinuity maps. A discontinuity map is consisting of a set of submaps
as schematically shown in Fig. 4. The number of discontinuity points in a map is less than
the countable number of infinite. The 1-d discontinuity mapping M, is formally described as
follows:

Md:{g(k): k=1s Tty My mgoo},
M;:1-=1, I=J=]0, 1)),
g(k) : 1(k)=J(), (k) el=21(k), IWeJ=2IQ), I(k)NIk")=¢, IDNI1")=4¢),
(2.4)

where g(k) denotes submaps, I(k) and J(l) are sub-intervals of I and J, respectively.
To make the discontinuity map in the manner where submaps are arranged self- similar
feature, we can obtain a fractal map. There exist many methods to bring the fractal nature
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Fig. 4 An Illustration for Discontinuity Map Fig. 5 An Example of One-Dimensional Fractal Map

The original for embedding transformation
is logistic map.

(namely, a self-similarity) on a discontinuity map. One of the methods to make a self-similar
map is repetitious application of embedding transformation. Another is to place the con-
tracted maps side by side in a whole 1-d fractal map by self-similar manner. An example is
shown in Fig. 5 using the contracted logistic map.

3. Iterative Dynamics on A 1-D Fractal Map

Let an 1-d fractal map be denoted by M;(x). The dynamics for a 1-d fractal map is the
generation of orbits by iterative application of M(x). Then the equation to describe the dy-
namics has following recurrent form

Xn+1=Mf(xn) (31)

where n means iteration number and initial value x; be assumed for this equation.

In order to consider an orbit generated by the M,(x), it is useful to classify the submaps
into two classes. The classes of submaps are state region and transition region. The classifica-
tion criterion is very simple, namely,

State region: the submap which crosses the line x,+;=x, or tangential structure for the

same line at any point is classified into this class,

Transition region: the submap which has no crossing point or no tangential structure

for the line X, =ux, is classified into this class.
When the orbit entered into the transition region, it immediately goes out the submap
classified into transition region at one iteration. On the other hand, the orbit stays at least a
few times in the state region. If the submap in the state region has the tangential structure,
the orbit stays for a long time in the state region. We can see that the complicated orbit is
more easily appeared for the 1-d fractal map.
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Fig. 7 One-Dimensional M Map

Fig. 8 One-Dimensional Fractal M Map

This map is given by two times repetition
of the 1-d M map shown in Fig. 6

Figure 6 shows an orbit generated by the fractal logistic map (Fig. 5). To make the tan-
gential structure in the map, we introduce the M map shown in Fig. 7. More complicated or-
bits generated by the fractal M map (Fig. 8) are shown in Figs. 9-11. A complicated intermit-

tent orbit is appeared in the fractal M map (Fig. 11). This implies that chaotic itineracy of an
orbit is latenet in the dynamics for the 1-d fractal maps.

4. Discussion

As stated in the last of previous section, the chaotic itineracy should be appeared in the
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o n ‘ 10000
Fig. 9 An Intermittent Orbit for the 1-D Fractal M Map
Chaotic and steady local orbits are alternated in chaotic manner.

1
Xn
0 n 10000
Fig. 10 A Multi-Periodic Orbit for the 1-D Fractal M Map
1

Y ’ 10000

Fig. 11 A Complicated Intermittent Orbit for the 1-D Fractal M Map
Chaotic and multi-periodic local orbits are alternated in chaotic manner.
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1-d fractal maps. It is also expected that the orbit which goes its rounds of several state
regions in the manner of chaotic itineracy may appear. This nature may also be realized in
other class of discontinuity maps. The self-similarity is not needed. It is essential that the
map is everywhere discontinuous. The requirement of self-similarity for the 1-d fractal map
may bring the more simple equations to realize the chaotic itineracy of orbits.

Now we consider the physical reality of 1-d fractal map. We expect that the 1-d fractal
map is obtainable when we make a return map from the Poincaré section of reconstructed at-
tractor embedded by a vector time series data [3,4]. If the mechanics of motion has muti-
components, the manifold constructed by orbits may be multi-fractal structure. When the or-
bits go their rounds sub-components fields, the manifold becomes complicated structure of
a Cantor set. We therefore may obtain multi-fractal structure of Poincaré section. This fact
may leads to the fractal return map on a Poincaré section.
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