Paper

A Comparative Study of Seasonally Adjusted and Unadjusted
Economic Data by the Correlation Integural Method

TosHIO INABA*, YOSHINORI NAGAI** and HIROSHI WAKO™***

(Received 14 Jan. 1997)

Abstract: The correlation integral method was applied to six kinds of economic variables, for each of
which six types of data (trended/detrended and unadjusted/seasonally-adjusted/ moving-averaged ones)
were prepared to calculate their correlation dimensions. The differences in the correlation dimensions cal-
culated for different types of data of a given economic variable are assumed to reflect its dynamics. From a
comparison of the correlation dimensions calculated, we found that the six kinds of economic variables
can be classified into three classes: that is, finite correlation dimensions are obtained (a) for five of the six
types of data, but not for trended unadjusted data (e.g., GNP and private equipment investment), (b) for
four of them, but not for detrended seasonally-adjusted and detrended moving-averaged data (e.g., ex-
ports and private housing investment; private final consumption expenditure is likely to be classified into
this class), and (c) only for trended moving-averaged data (e.g., imports). The implication of this classifica-
tion (e.g. which is essential to dynamics of a given economic variable, a total amount or a growth rate?) is
discussed.

1. Introduction

Recently, an economic system has been investigated from a viewpoint of deterministic
chaos to explore some dynamical aspects in it (Benhabib and Day, 1981; Day, 1982; Gran-
dmont, 1985; Brock, 1986, Chen, 1988; Owase, 1991; see also the references in Table I). One
of the interests in such an approach is to seek determinisity in economic data with erratic be-
havior rather than to regard them as a stochastic process. Some researchers suggested that
they found some evidences of deterministic chaos in economic data, whereas others did not.
The difficulty to verify the determinisity arises mainly from small-sized data. Novel methods
have been proposed to overcome it (Barnett, et al., 1992; Barnett and Hinich, 1993), besides
the method with correlation dimension (the references in Table I), Kolmogorov entropy
(Frank and Stengos, 1989), and Lyapunov exponent (Brock, 1986; Barnett and Chen, 1988).
However, whether or not there exits the determinisity inherent in economic data is still con-
troversial.

Here, we study Japanese economic data using the correlation integral method proposed
by Grassberger and Procaccia (1983a, b). Recent studies on economic variables with the cor-
relation integral method by various authors are summarized in Table I. In contrast to those
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Table I Correlation dimension estimated for economic data by various authors

Economic variable Author Correlation dimension® Country examined
GNP Brock (1988) ca. 3 (d=20) U.S.A.
Frank & Stengos (1988) 3.6(d=20) Canada
Frank et. al (1988) not saturated Italy, Japan, U.K., West Germany
Tanaka (1993) 3.3 (d=15) U.S.A
3.6 (d=15) West Germany
2.3 (d=15) Japan
Unemployment rate Brock & Sayers (1988) 2.5-3.5 (d=20) U.S.A
Frank & Stengos (1988) not saturated Canada
Tanaka (1993) 4.3 (d=15) U.S.A
3.3(d=15) West Germany
2.5(d=15) Japan
Gold/silver returns  Frank & Stengos (1989) 6-7 (d=25) U.K.
Stock return rates Scheinkman & LeBaron (1989) 5.7 (d=13, 14) U.S.A.
Stock price Peters (1991) 2.33 (d=7, 8) U.S.A
Money supply Barnett & Chen (1988) 1.5(d=6) U.S.A.

3 d in the parenthesis an embedding dimension, at which correlation dimension is determined.

studies, we do not have much concern for verifying the determinisity of economic data here.
Our interest is in classifying the economic variables with respect to their dynamics. From
such a purpose we examined trended/ detrended and unadjusted/seasonally-adjusted /mov-
ing-averaged data for each of six kinds of economic variables. It is usual to investigate
seasonally-adjusted data, when the original data have seasonality. However, processing the
data may change their dynamics to some extent. The changes to occur in the individual varia-
bles are considered to reflect their own dynamics. Although it is difficult to reveal their dy-
namics in an explicit form, the changes observed in the analyses of the processed data are ex-
pected to provide some useful information to characterize the economic variables with
respect to their dynamics.

In the next section the correlation integral method is explained briefly. The correlation
dimensions are calculated for trended /detrended and unadjusted/ seasonally-adjusted/mov-
ing-averaged data for the six kinds of economic variables of Japan in section 3. From a com-
parison of the correlation dimensions calculated, it is shown that the six kinds of economic
variables can be classified into three classes. Finally, the implication of the results is dis-
cussed in section 4.

2. Method
2.1 Correlation integral method

In this study we use the correlation integral method proposed by Grassberger and
Procaccia (1983a, b) (referred to as the G-P method hereinafter) to analyze economic time



A Comparative Study of Seasonally Adjusted and Unadjusted Economic Data

series data. Here, we summarize the method.
Let{xo, X1, -, X,} be a one-dimensional time series. From this primary one-dimen-
sional data, we define a d-dimensional vector (; as
=X Xitor Xiv2rs s Xitra—1ye) 2.1
d is called embedding dimension. The time delay 7 is set to one throughout this study.
Then we consider a d-dimensional vector time series
(Lo, G5 > Gn} 2.2)
where m=n—d+1.
The first step of the G-P method is to calculate a correlation integral C(e) for the data
embedded in d dimensions by counting the number of pairs of elements of the time series
(2.2) which are separated by a distance smaller than a given distance ¢; i.c.,

2 S oE—16-¢) (2.3)

&= im—1) <
where @ and |{;—¢;| are a Heaviside step function (i.e., @(»)=0if ¥ <0, and 1 otherwise)
and a distance between {; and (;, respectively. The number of pairs separated by a distance
smaller than ¢ is normalized by the total number of pairs in eq. (2.3).

If there exists a chaotic attractor, the correlation integral C(e) increases at a rate of &”
for a given embedding dimension d over the range of smaller ¢ (To the contrary, in the range
of ¢ larger than a maximum distance, C(¢) is equal to one) (Schuster, 1988). This is ideally ex-

pressed in the following scaling relation:
D,=lim log C(¢)/log ¢ (2.4)
=0

Equation (2.4) states that D, can be obtained as a linear slope of log C() versus log ¢
plot (the Grassberger-Procaccia plot, abbreviated as the G-P plot hereinafter), if linear
regions exist in the plot. The existence of the linear regions implies the fractal structure of
the chaotic attractor. D, is a function of d. If D, converges to some finite values D,* as the
embedding dimension d increases, D,* is called as correlation dimension of the system.

In practice, it is not always easy to define the region to measure slopes in the G-P plot
and to judge convergence of D, to D,* as d increases, when we treat real economic data. The
correlation dimension of a system is determined according to the following criteria in this
study.

First of all, essentially straight regions have to be detected in the G-P plot: The straight-
ness of individual regions is assessed by the correlation coefficients of the regression lines.
Usually the two extreme regions of ¢ are omitted because of errors arising from smallness of
available data. If there is more than one linear region in between and then more than one cor-
relation dimension is obtained, one of them is selected.

Before explaining the selection rule, let us describe how to obtain a correlation dimen-
sion for a given region of &. The slopes D, are plotted against embedding dimension d
(referred to as a D,-d plot hereinafter) for the given region of ¢. The feature of the D,-d plot
depends on the region where D, is measured. Either of the two cases occurs in general. In the
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first case the slope becomes almost constant for d larger than a certain embedding dimension
d;. In some plots the slope that saturates at d, resumes increasing at a certain dimension d,
(>d,). Such a case is also assumed to be included in this case. A correlation dimension D,*
is defined for the first case as a mean value of D, over the plateau region in the D,-d plot. In
the second case the slope D, diverges without any plateau region as d increases. In some D,-d
plots D, increases so slowly that the difference from a plateau is subtle. Including the slowly-
increasing case, we regard that the system has no correlation dimension for the second case.

If more than one correlation dimension is obtained from different regions of ¢ in a G-P
plot, we give the first priority to the D,-d plot in which D, is almost constant for d larger
than a certain embedding dimension. If there still remains more than one correlation dimen-
sion, the one measured in the region of the smallest distance ¢ (lower left region in the G-P
plot; see Fig. 2) is taken in principle. This criterion reflects the fact that the correlation
dimension is defined as the limit of small ¢ in a strict sense as shown in eq. (2.4). However,
we face a dilemma, because the region of very small ¢ may have errors arising from shortage
of data, and because we cannot reject a possibility that a multiple correlation dimension is
an essential nature of some economic systems. Consequently, it is hard to determine proper
linear regions in the G-P plot thoroughly automatically. A visual inspection and subjective
judgement are inevitable in some cases. It means that there still remains ambiguity in the de-
termination of the correlation dimension. Accordingly, we will confine ourselves mainly to
qualitative discussion below.

2.2 Economic variables examined

The six kinds of economic variables, GNP, private equipment investment (PEI), private
housing investment (PHI), private final consumption expenditure (PFCE), exports (EXP),
and imports (IMP) in Japan, are examined in this study.

The quarterly time series data from the first quarter of 1955 to the first quarter of 1989
(137 data points each) were obtained from ‘‘Annual Report on National Accounts’ by the
Economic Agency, Government of Japan.

For a comparative study, two more types of processed data were generated besides the
original trended data. They were obtained by seasonally adjusting by Census X-11 and by
taking a moving average over six quarters. In addition percentage changes from a previous
quarter were calculated for each of the three types of data. As a result we have the six types
of data for each economic variable, which are referred to as (tr, un), (tr, X11), (tr, mv), (%,
un), (Y%, X11) and (%, mv) below, where tr and % denote trended and percentage-change
(detrended) data, respectively, and un, X11 and mv denote unadjusted, seasonally-adjusted
by Census X-11, and moving-averaged data, respectively.

3. Results

At first the procedure we followed in this study is illustrated in Figs. 1-3 with the quart-
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erly time series of Japanese exports (EXP).

Figures 1(a) and (a’) show the time series of the unadjusted (original) data and its per-
centage change from the previous quarter, respectively. They are referred to as (tr, un) and
(%, un), respectively. Figures 1(b) and (b’) show the seasonally-adjusted time series by the
Census X-11 and its percentage change, referred to as (tr, X11) and (%, X11), respectively.
Figures 1(c) and (c’) show the moving average of the original data over six quarters and its
percentage change, referred to as (tr, mv) and (%, mv), respectively.

Figures 1(a), (b) and (c) reveal an exponential growth. The curves for the processed data
(b) and (c) are smoother than the unadjusted data (a). On the other hand, Figs. 1(a’), (b’)
and (c’) are bounded. While Fig. (a’) looks more periodic, Figs. 1(b’) and (c’) more erratic.

Figures 2(a) to (c’) show the G-P plots of EXP, which are calculated from Figs. 1(a) to
(c’), respectively. Correlation integrals are calculated for various embedding dimensions
(d=1, 2, ---, 15). As shown in Fig. 2 the correlation integrals are not necessarily straight in
the whole region of . Since a correlation dimension is defined from linear slopes of the
plots, we must be careful to choose the linear regions in the G-P plot, as described in section
2.

In Fig. 3 the slope D, is plotted against the embedding dimension d. The correlation
dimension D,* is defined as the saturated value of D,. In this case D,*’s are (a) 1.56
(4=d=<9), (@) 2.88 (5=d=9), (b) 0.94 2=d=7), (b’) diverging, (c) 1.13 2=<d<9), and
(c’) diverging for (a) (tr, un), (a’) (%, un), (b) (tr, X11), (b’) (%, X11), (c) (tr, mv), and (c’)
(%, mv), respectively.
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Figure 1 Time series of EXP (exports); (a) seasonally-unadjusted, (b) seasonally-adjusted, and (c) moving-
averaged data; (a’) to (¢’), percentage change from the previous quarter for (a) to (c), respectively.
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Figure 2 Correlation integrals (G-P plots) for the time series (a) to (c’) of EXP shown in Fig. 1. The embedding
dimension d is taken as a parameter.
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Figure 3 Slopes D, of the G-P plots (a) to (¢’) of Fig. 2, plotted against the embedding dimension d. The correla-
tion coefficient y of the regression line used to calculate the slope is also shown.
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In Table 1I the correlation dimensions obtained for six types of data of the six kinds of
economic variables are summarized. In general either of the two cases occurs; (a) a finite cor-
relation dimension D,* is obtained, and (b) not obtained. In the case (a), D,* is defined as
the mean D, over the range of correlation dimension ¢ indicated in the parenthesis. In some
cases (e.g., GNP (tr, mv) and PEI (%, mv)) more than one D,* value is given for different
regions of €. As described in section 2 it is not easy to apply the selection rule to them strictly
to define a unique correlation dimension. In other cases (e.g., PHI (tr, un) and PFCE (%,
un)) more than one D,* value is given for different regions of d in the same D,-d plot, be-
cause the plot has more than one plateau region. In the case (b) there are two cases; D,
diverges obviously and increases slowly, as d increases. The term ‘‘slowly increasing”’ im-
plies that the difference from a plateau is subtle.

The correlation dimensions for the six types of data of a given economic variable differ.
It means that processing the data changes the dynamics of the system. The changes are as-
sumed to reflect the dynamics of the original system. In this context we may classify the six
economic variables examined into three classes on the basis of the results in Table II; (a)
GNP and PEI, (b) EXP, PHI and PFCE, and (c) IMP. We will discuss the implication of
this classification in the next section. '

4. Discussion

We investigated the time series of the six kinds of Japanese economic variables, GNP,
PEI, EXP, PHI, PFCE, and IMP, using the correlation integral method. For each of the
variables the six types of data, trended/detrended and unadjusted/seasonally-unad-
justed/moving-averaged i.e., (tr, un), (tr, X11), (tr, mv), (%, un), (%, X11) and (%, mv),
were prepared to explore the dynamical aspects of the economic variables. It is found that
finite correlation dimensions exist for some types of the data, but do not for others, even for
the same economic variable, as shown in Table II. This fact suggested that the dynamical
structures of the economic variables are changed by processing the data (i.e., seasonal adjust-
ment or moving average). The changes by the processing depend on the dynamics of the vari-
ables. Accordingly, the classification of the six economic variables into the three classes
based on the results in Table II reflects their dynamics.

The first class includes GNP and PEI, whose correlation dimensions are obtained for
five of the six types of data, but not for (tr, un). It should be emphasized that finite correla-
tion dimensions for both (%, X11) and (%, mv) are obtained only for GNP and PEI. Rough-
ly speaking, these results imply that these economic variables are confined in low dimensions
with respect to the growth rate. In other words, the growth rate is a more essential variable
to describe the dynamical behavior of GNP and PEI than the total amount.

The second class includes EXP and PHI, whose correlation dimensions are obtained
for (tr, un), (tr, X11), (tr, mv), and (%, un), but not for (%, X11) and (%, mv). PFCE is
likely to be classified into this class, although the correlation dimension for (tr, X11) is not
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Table I Correlation dimensions®

B . Unadjusted Seasonally-adjusted Moving-averaged
conomic
variable trended %-change trended %-change trended %-change
(tr, un) (%, un) (tr, X11) (%, X11) (tr, mv) (%, mv)
1.94% 2,420
— 7=d<9) <d<
0.75 ( 185 (0=ds10) 147
GNP (slowly or
increasing) (7=d<13) o (5=d=<9) 2.64 (B3=d=<y)
(diverging) (6=d=12)
3.30n
PEI slovly 2.04 1.54 1.92 g (10=d<19
increasing) B=<d=<l15) 9=d=<15) (B=d=<12) (1=d<l10) 3.09
(T=d=<l4)
1.56
(4<d<9)
EXP or 2.88 0.94 — 1.13 —
— (5=d=<9) (2=d=7) (diverging) (2=d<9) (diverging)
(slowly
increasing)
PHI 1.15 1.409 2.33 1.23 — 1.47 —
(2=d<7) (12=d<15) (4=d<8) (3=<d=<9) (diverging) (7=d<l4) (diverging)
1.43 1.36 — 1.49
1.61 (4=d=<7) (9=<d=<13) (slowly (11=d<15) o
PFCE ’ or increasin —a or . .
(4=d=13 0.95 2.09 or 221 (diverging
2=d<4) (10=d<15) diverging) (4=d<l15)
7 1.44
_ — (T=d<12)
P Lowl L lowl L. .
. in(csr:;;rymg) (diverging) in‘;;’;;gg) (diverging) % (diverging)
5=d<l1l)

a A correlation dimension is defined as the mean value of D, averaged over the range of embedding dimen-
sions d specified in the parenthesis. — indicates that no correlation dimension is obtained, because D,
diverges obviously or increases slowly as the embedding dimension & increases.

» Two correlation dimensions determined in the different regions of ¢ are given. The value in the upper row
is obtained in the region of relatively larger ¢ than that in the lower row.

9 Two correlation dimensions determined in the different regions of embedding dimension d are given. The
range of d is indicated in the parenthesis.

9 5.60 (6<d=<11) or (diverging). However, 5.60 is too large to accept as a correlation dimension for the
case with small size of data (see Eckmann and Ruelle, 1992).

obtained. In contrast to the first class, finite correlation dimensions for (tr, un) are obtained

only for EXP, PHI and PFCE. Therefore, we may say that the total amount is a more essen-
tial variable to describe their dynamics than the growth rate for EXP, PHI, and PFCE.

The third class includes IMP, whose correlation dimensions are obtained only for (tr,

mv). The correlation dimensions for (tr, mv) of the other variables are also obtained. The
simple moving average of the data with trend seem to quench random deviations from the

average value or to remove random noise. In this sense the correlation dimensions for (tr,

mv) may be exceptional. Accordingly, the IMP result suggest that its behavior is rather

stochastic.
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Figure 4 Correlation integrals for (A) Hénon map with 100 data points, (B) x-variable of Lorenz equation with
110 data points, (C) z-variable of Lorenz equation with 110 data points, (D) GNP (%, X11), (E) PEI (%,
X11), and (F) IMP (tr, un). The arrows indicate the regions whose slopes are small locally as compared
with the neighboring ones.

Finally, we comment on a phenomenon peculiar to small-sized data in determining cor-
relation dimensions. Figs. 4(A) to (C) show the G-P plots for Hénon map (Hénon, 1976) and
Lorenz equation (Lorenz, 1963) calculated only with a small number of data (~10?) com-
parable to the size of the economic data we used here. There appear the regions whose slopes
D, are considerably small as compared with the neighboring regions (indicated by arrows in
Fig. 4). The correlation dimensions calculated in the regions just on the right side of such
regions are slightly higher than the exact ones. Since such regions are not observed in the G-
P plots with enough data, they are obviously an artifact owing to the small-sized data. Simi-
lar phenomena were found in the economic data we analyzed. The examples are shown in
Figs. 4(D) to (F). The slopes of such regions as indicated by arrows in Fig. 4(D) to (F) have
unreasonably small values. Eventually we ignored these region in measuring the slope.

In conclusion, it is a challenging theme to reveal the dynamics of economic systems.
Use of the correlation integral method is the one of the efficient approaches. Although
small-sized data make it difficult to obtain the correlation dimensions exactly, the applica-
tions to various types of data of the same economic variable have provided a novel aspect in
classification of the economic variables from the dynamical point of view.
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