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Abstract: A study is presented to reveal a dynamical aspect of a few sets of time series which show ir-
regular behavior, but which are considered to correlate to each other to some extent. The methods to ana-
lyze the time series with a fluctuating nature are discussed from a point of view of deterministic dynamics
in comparison with those from a stochastic point of view. As an example, the method using Poincaré sec-
tions on an embedding manifold is applied to two or three sets of time series data. The condition is also ex-
amined to derive an intrinsic microscopic dynamical aspect from macroscopic time series actually ob-
served.

1. Introduction

In order to study time series it is possible to approach them from two different points of
view; that is, stochastic (or statistical) and dynamical ones. If the time series have regular be-
havior, it is natural to believe that the time series are generated by some deterministic
mechanism. On the other hand, if the time series behaved irregularly, it was usual to exa-
mine their nature from a statistical point of view, before the existence of deterministic chaos
came to our knowledge. Now, we have to examine the time series from a deterministic point
of view, even if they show irregular behavior, because deterministic chaos shows stochastic
behavior due to its nonlinearity in spite of its deterministic nature.

Many efforts has been devoted by many researchers to analyses of various types of ex-
perimental data to check whether they are deterministic chaos or not [1, 2, 3]. However, it is
only a few cases that some clear evidences for determinisitic chaos have been found in the ex-
perimental data [1, 2, 3]. The number of degrees of freedom of the systems analyzed as deter-
ministic chaos is rather small, usually one degree of freedom.

In this paper we consider how to treat two or three sets of time series data, which are
considered to correlate to each other to some extent, so as to reveal their dynamics (or
mechanics) behind the observed data. Although the discussion in this paper can be easily ex-
tended to more general cases, we confine ourselves to a system with two or three degrees of
freedom, i.e., a system that can be described with two or three variables (in other words, we
study relationship between two or three sets of time series data from a dynamical point of
view). This restriction is convenient for a visual inspection of actual data and calculated
results.
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In section 2, we discuss stochastic and dynamical aspects of the time series. In physics,
it is natural to consider that these two aspects are closely related to each other, because phys-
icists have much interest about causality in observed phenomena. In general, however, these
two aspects may be regarded as rather different. This point is discussed by reviewing the
methods used in the study on stochastic processes.

Since our main interest in the time series lies in their dynamics, we study the method to
obtain an evidence for dynamical causality behind the observed data. In the theory of dy-
namical systems, a Poincaré section on the manifold constructed by orbits of dynamical vari-
ables provides a useful tool. This method is examined in section 3. Some modifications are
considered to apply it to several sets of time series data.

In section 4, we show some results of the actual applications to several sets of economic
time series data. In this study we used quarterly economic data, which are obtained by
properly summing up the base data (i.e., daily or monthly data) during the quarter period.
This coarse-graining caused by the summing-up procedure is considered to destroy the deter-
ministic nature in the microscopic level. Hence the influence of the coarse-graining of the
microscopic data is discussed. We consider the condition that the intrinsic causality in the
microscopic data can be conserved in the macroscopic data actually observed.

Finally, the summary and discussion about the problems remaining are given in section

2. Stochastic Aspect and Dynamical Aspect

Stochastic Aspect

Let us consider a set of time series data {xy, X1, X2, -, X,} (shortly denoted by {x},).
When this set of time series data has irregular nature, it can be characterized by a probability
density or probability distribution, { P(x)}. The Fourier transformation of { P(x)},

d)(s)zg e™P(x) dx 2.1

is called characteristic function, where s is a parameter. A logarithm of ¢(s) can be ex-
pressed by a cummurant expansion [4, 5]. The cummurants are obtained from the moments
of time series data [4, 5].

Now we consider two sets of time series data {x;}, and { y;} , whose probability distribu-
tions are given as { P(x)} and { P(»)}, respectively. We introduce two-variable probability
distribution { P(x, ¥)} for {x;, ;} .. If the two sets of time series data are independent from
each other, the probability distribution { P(x, y)} can be expressed as the product of P(x)
and P(»), i.e., {P(x, y)} ={P(x)P(y)}. It is interesting to consider the distribution differ-
ence of the above two probability distributions;

D(x, yy=P(x, y)—P(x)P()). 2.2

The moments for the distribution difference are given as follows;
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<xm>D=§x'"D(x, ») dx dy 2.3)
<y’>u=§ y'D(x,y) dxdy (2.4)
<x'"y1>p=§ x"y'D(x, y) dx dy. (2.5)

If all the cross moments (2.5) vanish, the two sets of time series data are mutually in-
dependent. To the contrary, the existence of non-zero cross moments implies that the two
sets of time series, {x;}, and {y;}, have some correlation to each other. In the case of
n=1I=1, the cross moment { xy>p, for the distribution difference is equivalent to the cross cor-
relation of the two sets of time series data as shown in the following:

<xy>D=g xyD(x, y) dx dy
=§ xyP(x, y) dx dy —E xyP(x)P(y) dx dy

:SxyP(x, ¥) dxdy—ijP(x,y’) dx dy’ SySP(x’,y) dx’ dy

={xyy =X X . (2.6)
{xy>p devided by the standard deviations s, and s, of the distributions {P(x)} and {P(y)} is
a correlation coefficient. The correlation coefficient has a meaning how the two sets of time
series data are correlated to each other. For example, if it is equal to one, they have a linear
relationship to each other. The cross correlation is usually used in the analysis of time series
data from a statistical point of view.

So far, we have considered the time series from only a statistical point of view; in other
words, there is no consideration about time or dynamics. If anyone wants to take into ac-
count temporal development of the time series in the analysis from a statistical point of
view, it is necessary to examine the time series as a stochastic process. In such a treatment,
the transition probability, w(x, ¢; x', t'), plays an important role. The chain of the transition
probabilities corresponding to a sample path givés a full detail of the dynamics. The chain of
the transition probabilities usually expressed as a master equation or the Chapman-Kol-
mogorov equation,

w(x, t; x’, t’)zg dx”"w(x, t;x", t"yw(x”,t";x', t"). 2.7)

When we take into consideration the temporal development in the analysis of the time
series, the main problem is how to determine the transition probabilities from the actual
time series data under the assumption of Markovian stochastic process. The Fokker-Planck
equation, which is a special case of the differential Chapman-Kolmogorov equation called
by Gardiner (p. 51 in ref. 4), is one of the answers to this problem. Following the reference
4 (pp. 47-51), we briefly describe the derivation of the differential Chapman-Kolmogorov
equation below.



Memoirs of the Kokushikan Univ. Center for Information Science. No. 16 (1995)

Let the time evolution of an expectation value of a physical quantity f(x) be given by
the following equation:

<f(x)>(t)=S Qf (X)W, 15 oy 1) 2.8)

where x, and f, are an initial position and initial time of the stochastic process, respectively.
The differentiation of the expectation value < f(x)>(¢) with respect to time ¢ leads to the
differential Chapman-Kolmogorov equation for the transition probability w(x, £ x', t),
i.e.,

d
o <f(x)>(t)=g e (XYW, £; Xoy 1)

1
—hm T {S dxf (x)[w(x, t+A4t; xo, to) — W(x, £; Xo, to)]}

1
=lim T {S de dx’f(x)w(x, t+A4tx7, H)w(x’, t; xo, to)

—S dxf(x)w(x, t; xo, to)} 2.9
Expansion of f(x) around x’
Sx)=f(x’ )+Z,~: g(,)(x, xi)+ Zf,; ),( —x{)(x;—x])
+lx—x"I?R(x,x") (2.10)

and substitution of (2.10) into (2.9) leads to the differential Chapman-Kolmogorov equation

w(x't; Xo, to)= — Z [Aix’, Ow(x’, t; xo, 1)]

a ’

2

]
+Z ’B S [Bi(x', HW(X', 15 X0, 10)]
+ E dx[W(x"; x, tYW(x, 1; Xo, to) — W(x; x', D)W(X', [; X0, Lo)]  (2.11)
The following conditions are used in this derivation

lim w(x, (+46x/, N/ At=Wx;x', 1) (2.12)

(uniformly in x, x’, and ¢ for Ix—x'[z¢)

1
erjloA_de(x’ xDw(x, t+At;x’, t)=A:(x’, t)+0(e) (2.13)
1
BIR)Z]_E dx(xi—x! ) x;—x/)w(x, t+A4tx", t)=By(x', t)+ O(e) (2.14)
(integration in |x—x'[ <g)
and
IR(x,x’)I =0 as lx—x"1—0 (2.15)

Here it should be noticed that
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§dxf(x)W(x, £; Xo, to)=[11ilg}) {dxj dx’f(x)w(x, t+4L;x7, Ow(x’, t; xo, t))  (2.16)

In the case that the last term in (2.11) can be neglected, the differential Chapman-
Kolmogorov equation is reduced to the Fokker-Planck equation:

a a ’ 7
Py w(x’, t; Xo, o) = —Z ™ [Adx", )w(x’, t; xo, to)]
] az 7 !’
+ %}—ax;ax} [Bi(x', )W(x', t; Xo, £o)] 2.17)

Following the above derivation of the Fokker-Planck equation, we can obtain a proce-
dure to construct a model of stochastic process from the time series, even if the derivation is
carried out under some restrictions. The procedure described below, therefore, gives an ap-
proximate scheme for the time series. The scheme of the Fokker-Planck equation should be
true if the time series satisfy the condition of stationary Markovian process.

Equations (2.13) and (2.14) imply that the mean value and the cross correlation calculat-
ed from the time series data have small deviations, while the mean value and the cross corre-
lation can be obtained from the time series data in the situation that small errors are accept-
able. Using these mean value and cross correlation, the transition probabilities are given
with the solution of the Fokker-Planck equation (2.17). Hence the procedure to make a
model of stochastic process becomes as follows:

1
Alx’, )= N ; (x(k)=x)0k(e, x(k), x") (2.18)
1
Bi(x ,t)=m2k] (xi(k) = x)(x;(k)— x;)0i (e, x(k), x7) (2.19)
Ocle, x(k), x")=0(e— v 2, (xik) —x[)) (2.20)
Ne(x)=2] bi(e, x(k), x") (2.21)
k

where {x(k)} means time series data and 6(---) denotes a step function. Substituting (2.18)
and (2.19) into the Fokker-Planck equation (2.17), the solution {w(x’, #; x,, to)} gives proba-
bility distributions for a stochastic process by which the time series data {x(k)} are generat-
ed.

Dynamical Aspect

The discovery of deterministic chaos have brought about the situation that an irregular
nature of time series data is considered to be a result of nonlinear deterministic dynamics.
Many works have been carring out along such a line.

It is well known that chaotic orbits (or trajectories) become less predictable as time goes
on, but that the manifold constructed by chaotic orbits is stable (this stability called robust).
This fact was pointed out at first by Lorenz [6]. In the analysis of time series data from a
point of view of chaotic dynamics, the time delayed coordinate embedding method of a few
sets of time series is applicalbe [7, 8, 9] owing to robustness of strange attractor of chaotic or-
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bits [1, 2, 3]. Most studies of the time series data by the embedding method are carried out
for one set of time series data, while embedding of orbits is always possible for any number
of sets of the time series data.

Embedding of orbits (or trajectories) into the d-dimensional space shows a manifold in
the d-dimensional space. If the manifold constructed by the embedded orbits has a deter-
ministic character, subsections of the manifold are related to each other. A Poincaré section
is a kind of subsections. The relation between the subsections is described by a mapping be-
tween elements of subsections. This is a useful procedure to study the deterministic relation-
ships between orbits generated in a deterministic dynamical system. Hence it becomes obvi-
ous how we can see the determinisity of time series data. The embedded manifold of the time
series data is obtained by replacing the continuous orbits with the descrete time series data.
Then we see the structure of the embedded manifold and relationships among any sets of
time series data.

There exist other situations to see the determinisity of the time series data. As men-
tioned above, determinisity discussed in this paper is equivalent to the relationship or the
mapping between pairs of data points. If we find the mapping

S Wi Uik (2.22)
for vector time series data {u;},, the determinisity of the time series {u;}, can be described by
this mapping; that is, we can reveal the causality of the time series from the mapping (2.22).
For one-dimensional time series data the mapping f; is called return map. It is hard,
however, to find such mapping in the actual time series data in most cases. There are many
reasons for the difficulties. Unknown dimension to describe the temporal development of
the time series is one reason. Another is the stochasticity caused in the observation. This is
the reason why the statistical method is used in a practical analysis of the time series data
to find the mapping fi of (2.22); for example, introducing an ensemble {u;},-, (data col-
lected near the data point u; within the distance &), f, is estimated as an average of ensemble
{W;—} 4= +.. The statistical method stated here is very similar to that appearing in the proce-
dure of stochastic processes.

The mapping f, obtained above reflects a local property of the time series data. If the
mapping f; is equivalent to any other mapping foiuuw o (j=1, 2,...), the mapping f; is
called universal. Any information about the time series is obtainable from the mapping f;.
Any mapping that belongs to the same universal mapping undergoes the same kind of causal-
ity governing the system.

3. Embedded Manifold and Poincaré Section

Since a strange attractor of chaotic orbits (or trajectories) has the nature of robustness,
it is better to analyze the time series data by the embedding method [7, 8]. In this section we
briefly review the embedding method to construct the manifold and a Poincaré section to
analyze the embedded manifold. In this section, {X.},, {Y;},, and {Z;}, are used for the

—_f —
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time series data and X;, y;, and z; for the variables on the Poincaré section.

Let { Xi}n, {Yi}n and {Z;}, be three sets of time series data. As mentioned in section 2,
the embeded manifold is obtained by embedding three-dimensional vector time series {u;},
={(X;, Y;, Z)}ninto d-dimensional space. For convenience sake of our visual inspection we
consider the case of d=3. In this explanation we put d=3. In such a case, the embedded
manifold of the vector time series data is the distribution of data points {,}, expressed as

{3 X - X)o(Y - Y)HZ~Z)}, (3.1)

where J(...) means a Dirac’s delta function. The examples of embedded manifolds for the
time series f Lorenz model (Fig. 1) are shown in Fig. 2.

Time
Fig. 1 Time Series Data of Lorenz Model

The ordinary differential equations, X= — cX+cY, Y=rX— Y+ XY, and Z=XY—bZ are solved numerically us-
ing the Runge-Kutter method with the parameter values r=28, ¢c=10, and »=8/3.

In order to examine the determinisity of the time series data, a Poincaré section of the
embedded manifold and the return maps on the Poincaré section are useful. For simplicity,
we consider the Poincaré section on only the planes parallel to either XY-, YZ- or ZX-plane.
Although this is slightly different from the ordinary treatment, the difference brings no trou-
ble in the analysis. In Fig. 3 a Poincaré section is illustrated for some fixed Z value. The
structure of the embedded manifold is understood by intersection points on the Poincaré sec-
tion. Let x;, X+, Xi+2,... and y;, ¥i11, Yi+2,... be intersection points and ¢, ;. ;, #;-,... be in-
tersection times. The return maps representing the relationships between intersection points
(xi, X;+1) and (y;, y;+1) and between time intervals (¢, —f;, t;1,—;.) are significant for the
analysis.

In Fig. 4 some examples of a Poincaré section and return maps on the Poincaré section
are shown for the Lorenz model. The determinisity clearly appears in both the Poincaré sec-
tion and the return maps of intersection points, although the recognition of the structures in
these figures is somehow subjective. In the present stage of chaos study, however, such an in-

_77
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Fig. 2 Embedded Manifolds for the Lorenz Model
a, b, and ¢ are embedded manifolds in the two-dimensional space, and d is the embedded manifold in the three-

dimensional space.

A ('Xj»zx y}.z: Zj.z)

Poincaré
section

\”

“ W %5 Y0 2,09
A Zj)

Fig. 3 Schematic Representation of Poincaré Section
The trajectory (or orbit, shown by long arrows) and the plane of Poincaré section with a fixed Z value are shown.
Intersection points (X;, ¥, (Xi+1, ¥i=1)-.., and intersection time #, f;. ,,... are indicated. The intersection points are

classified with respect to intersecting directions of the trajectory, i.e., upward (O) and downward (+) directions.
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Fig. 4 Poincaré Section and Return Maps for the Lorenz Model
a: 3-d embedded manifold, b: Poincaré section at Z=24, c, d, e: return maps of intersecting points x and y, and
of time intervals, respectively. In ¢ and d, the two scales for the horizontal and vertical axes are indicated. The inner
scale is for intersection points of the downward direction (+) and outer one for those of the upward direction (O).
In e, the scales denote the iteration number of numerical calculation.

tuitive approach plays an important role. Further investigations are necessary to conclude
the determinisity in the Poincaré section and the return maps.

4. Application to Economic Data

In this section we apply the embedding method to economic time series data. The eco-
nomic data used here are seasonally-unadjusted and detrended quarterly data of GNP,
PFCE (private final consumption expenditure), PHI (private housing investment), and IMP
(import).

The two-dimensional embedding of the economic data are shown in Fig. 5 for the four
pairs of economic variables, GNP-PFCE. GNP-PHI, PFCE-PHI, and PHI-IMP. It can be
observed that the pairs, GNP-PFCE, GNP-PHI, and PFCE-PHI, have some structures in
their embedding into 2-dimensional space, while the pair PHI-IMP has no structure.

To explore more fine structure of economic data GNP, PFCE, and PHI, the three-
dimensional embedding method was applied to these data. In Fig. 6a the 3-dimensional em-
bedded manifold of the vector time series data (GNP, PFCE, PHI) is shown. Fig. 6b shows

— 0 —
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Fig. 5 Two-Dimensional Embedded Manifold of Economic Time Series.
The used data are seasonally-nonadjusted and detrended GNP, PFCE, PHI, and IMP in Japan from the second
quarter of 1955 to the first quarter of 1989.

the Poincaré section at PHI=0.05. Fig. 6¢c and d show the return maps of intersection
points with respect to GNP- and PFCE-axes, respectively. It seems possible to find the deter-
minisity in the return maps on GNP- and PFCE-axes, if we consider only the case that the
trajectory intersects the Poincaré section toward the upward direction. Fig. 6e is the retun
map of time intervals between successive intersection times on the Poincaré section. Most of
the time intervals distribute around four quarter, i.e., one year.

Now let us give here some comment on how the microscopic causality is approximately
conserved in the macroscopic causality, when we perform the coarse-graining of the time
series data. We assume here that the microscopic causality can be expressed explicitly in the
following function

yi=f(x:)- 4.1)
Usually, economic data such as quarterly data are obtained by taking summation over daily

or monthly data. For example, summed-up data over m periods are denoted by
jtm—1 j+m—1

X;= Z Xi, Y= Z V- “4.2)
k=j k=j

It is obvious that the exact relation Y;=F( X)) cannot be obtained from the microscopic
causality y;=f(x;) except that the linear relationship, y;=ax;+b (a and b are constants)
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Fig. 6 3-D Embedded Manifold, Poincaré Section, and Return Maps For Seasonally-Nonadjusted and Detrended
GNP, PFCE and PHI.
The data form the first quarter of 1969 to the forth quarter of 1979 in Japan are used.
a: 3-d embedded manifold, b: Poincaré section at PHI=0.05, ¢, d, e: return maps of intersection points on GNP
and PFCE axes, and of time intervals, respectively. Inner scale in ¢ and d is for intersection points of the downward
direction (+) and outer one for those of the upward direction (C).

holds. However, the approximate relation Y;=F(X;) are obtainable, if the microscopic
causality satisfies some conditions. To obtain such conditions we carry out the following cal-

culation. At first Y; is written by a summation of f(x,), i.e.,
J+m—1 Jjtm—1

Y= Z} Y= /(Z:J J(xi0).

We also assume that the microscopic causality f(x;) can be expanded as the following power
series

4.3)

f(x)=ar+axit+axitasxi+ - +axit- (4.4)
Under this assumption we can obtain
Yi=maota X;+a(XF— 2] 2 xxe) Fa(X7— 20 D0 D) XeXuXer )+
ko ok k ko Tk
(k=k’) (kxk'=k")
+a,(Xj’—-Z Z Z xkxkl"'Xk[)+"' (4'5)
k K k-

(kxkiyx =k )
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The right-hand side of Eq. (4.5) can be expressed as
) +(m=Da—g( ¥ x0), 4.6)

where g( Z, x,) denotes the contribution from the higher order terms (>>1) of correction.
Higher-order terms correction of g( Z, x,) is negligible, if > xk(1 — )/ Sl
(ielj, j+m—1]), where &, is 1 for k=i and 0, otherwise. If 2ix(1=6k)/ 2 x~1—1/m,
the difference between Y; and f( X))+ (m—1)a, becomes

Y= {f(X)+(m—Dao} | ~ laa(1 =1/ m)X3+as(1=1/m*)X ]+ (4.7

As seen from eq. (4.7), the difference between Y; and f( X))+ (m— 1)a, becomes larger rapid-
ly as the period m to sum up the data get larger.

According to the above calculation the condition that the coarse-grained data
(or summed-up data) can conserve the microscopic causality is equal to the condition for
g( Y. xp) to be negligible.

5. Summary and Discussion

We have studied a method to study dynamic relationships among economic variables
[10]. In that study [10], we used the three-dimensional embedding method for economic
time series data. We have been considering how we can find the deterministic relation (or
causality) from the time series data. We believe that the embedding method of time series
data is useful to find the determinisity. However, we have few knowledge how the deter-
minisity appears in the embedded manifold, Poincaré section and return map of intersection
points on the Poincaré section. So, it is necessary to study the nature of strange attractor ob-
tained for well-known chaotic time series data. We should also consider what condition of
constraint on dynamics can be reduced from the surface intersected by the embedded
manifold of time series data. These studies are carried out with the nonlinear differential equ-
ations. The embedded manifold is necessary to be classified. The goal of the study of this
field is to give the method by which one can obtain a model of a set of nonlinear differential
equations from the time series data actually observed.
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