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Application of Correlation Integral Method to Economic Data
ToSHIO INABA*, YOSHINORI NAGAI** AND HIROSHI WAKO™**

Abstract: The correlation integral method is applied to seasonally adjusted and non-adjusted
economic data. From the analysis of the correlation dimensions of several kinds of economic data, which
can be derived from their correlation integrals, it is found that the economic data can be classified into
three categories from a viewpoint of a dynamical system: (a) no correlation dimension exists for the ad-
justed data, while a finite correlation dimension is obtained for the non-adjusted data (e.g., private hous-
ing investment), (b) no correlation dimension exists for either data, and (c) finite correlation dimensions
are obtained for both data (e.g., private equipment investment).

1. Introduction

Recently economy has been investigated from the view-points of deterministic chaos to
explore some dynamical aspects in economic system [Benhabib and Day (1981), Day (1982),
Grandmont (1985), Brock (1986, 1988), Barnett and Chen (1988), Chen (1988), Hiromatsu
and Tanaka (1988), Peters (1991)]. One of their interests is to seek the determinisity in
economic data with erratic behavior. For example, GNP, private equipment investment,
and private consumption expenditure have been analyzed by the correlation integral method
proposed by Grassberger and Procaccia (1983a, b) with such a motivation.

However, it should be noticed that in those analyses only seasonally adjusted data were
considered. As a matter of fact, it has been pointed out that one should be much careful in
using seasonally adjusted economic data to investigété dynamic properties of economic
variables, since there exists a possibility to cause some artifact in the seasonally adjusted
data by taking a moving average of original data. For example, an artificial fluctuation,
known as Yule-Slutky effect, produced by inappropriate moving average of original data,
and an artificial periodicity resulting from averaging random variables (Gaussian random
numbers) are well known. In addition to these effects, when we study economic data as a
dynamical system as described in this paper, we are afraid that averaging procedure of
original data may introduce a kind of stochasticity into resultant averaged data, although
original data has a deterministic structure in itself. Since there is a possibility at any rate for
averaging original data to change underlying dynamical structures in original economic
data, it is necessary to examine results derived from seasonally adjusted data, being com-
pared with those from non-adjusted original data.

In this paper, we take an approach to such a problem by means of the correlation
integral method, which is used to assess whether or not a dynamical system has deter-
ministic structure. Differences between correlation integrals calculated for several kinds of

*School of Education, Waseda University
**Center for Information Science, and School of Political and Economic Sciences, Kokushikan University
***School of Social Sciences, Waseda University



Memoirs of the Kokushikan Univ. Center for Information Science. No. 15 (1994)

adjusted and non-adjusted economic data are examined. In the next section the correlation
integral method is explained briefly. Since a size of economic is data considered too small
to apply the correlation integral method, applicability of the method to small sized data,
such as economic data, is also discussed, based on the previous work where well-known
physical systems (Lorenz equation and Hénon map) are analyzed in this point of view
[Nagai, Inaba, and Wako (1993)]. In section 3 the correlation integral method is applied
to the economic variables (private equipment investment, private housing investment), and the
results are discussed in section 4.

2. Method

In this study we utilize the correlation integral method proposed by Grassberger and
Procaccia (1983a, b) (referred to as the G-P method hereinafter) to analyze economic time
series data. In the following the G-P method is summarized briefly and its applicability to
small-sized data, such as economic data, is examined, because it is usually considered that
the G-P method can be applied to a time series with more than 10 data points, whereas the
sizes of most of economic data are in the order of 102-103.

2.1 G-P method

Takens (1983) showed that higher-dimensional manifold can be reconstructed from any
low dimensional sequential data by the method of embedding if the manifold is smooth, and
that some topological properties of the manifold are conserved. Following such nature of
embedding of sequential data, Grassberger and Procaccia designed a method to estimate a
fractal dimension of the reconstructed manifold by calculating correlation integrals of the se-
quential data. The fractal dimension provides a lower bound to the degrees of freedom for
the system. First we summarize the method briefly.

Let {x, X1,..., X,} be a one-dimensional time series. Making use of this primary one-
dimensional data, we define a d-dimensional vector {; as

§1= {xia Xit1s Xit2rseees xi+(d—1)r} (21)
with time delay 7 (in practice 7 is set to one throughout this study), where d is called an
embedding dimension. Then we consider the d-dimensional vector time series

{80, &1y oo T, (2.2)
where m=n—d+1.

The first step of the G-P method is to calculate the correlation integral C(¢) for the data
embedded in d dimensions, by counting the number of pairs of elements of the time series
(2.2) separated by a distance smaller than a given distance &, i.e.,

Cle)=2, Z] O~ 15—51)/ m(m—1) (2.3
i=1j=i+
where @ and IZ,—EJ | are a Heaviside step function (i.e., @(¥)=0 if y<0 and 1 otherwise)
and a distance between Z; and fj, respectively, and the number of pairs separated by & is nor-
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malized by the total number of pairs m(m—1).

For a chaotic attractor the correlation integral C(¢) increases at a rate of eP for a given
embedding dimension d over the range of smaller ¢ (in the range of ¢ larger than a maximum
distance, C(¢) is equal to one) [Schuster (1988)]). This is ideally expressed in the following
scaling relation :

D2=lin01 log C(e)/log &. (2.4)

Equation (2.4) indicates that D, can be obtained as a linear slope of log C(¢) versus log ¢
plots (the Grassberger-Procaccia plot, abbreviated as the G-P plot hereinafter) if linear
regions exist in the plot. The existence of the linear regions implies the fractal structure of
the chaotic attractor. If D, converges to some finite value as the embedding dimension d in-
creases, a converged value of D, is called a correlation dimension. It is known that the cor-
relation dimension is less than or equal to the fractal dimension (box counting dimension) of
the chaotic attractor. However, in practice, estimation of the correlation dimension for an
actual system is not straightforward because of a shortage of data points available. This
point will be discussed in the section 3 below.

2.2 Applicability of the G-P method to small-sized data

The G-P method is usually applied to a time series consisting of a large number of data
points, say, greatér than the order of 104. Even though the G-P method has been utilized to
analyze economic data from the viewpoint of deterministic chaos, much attention has not
been paid to applicability of the G-P method to such small-sized data of the order of 102
[Chen (1988)]. Therefore, before applying the G-P method to economic data, we discuss its
applicability here and examine it in the previous work [Nagai, Inaba, and Wako (1993)].

In the previous work, we take the Lorenz equation and Hénon map as examples,
because the correlation dimensions for these models have been already known [Grassberger
and Procaccia (1983)] According to the results of these analyses [Nagi, Inaba, and Wako
(1993)], although the correlation dimension of the system determined from a small number
of data points is not exactly the same as the true one, the deviations of the calculated correla-
tion dimensions are less than ten percent. It is also found that, in the G-P plot, the region of
¢ in which a slope converges as an embedding dimension increases shifts to a larger ¢ region
as the number of data points decreases [Nagai, Inaba, and Wako (1993)]. In other words,
although it is better that the slope of the G-P method is measured in the region of smaller &
[see eq. (2.4)], one should be careful that the error becomes dominant in the region of
smaller ¢ for small-sized data. As a result the correlation integral can be applied to small-
sized data, as far as we confine ourselves to the qualitative nature of the system, but we
should keep in mind that there remains uncertainty in the results calculated from the small-
sized data.

3. Results

The results obtained for seasonally adjusted data are compared with those for seasonal-
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Figure 1 Time series of PEI (private equipment investiment); (a) non-adjusted date and (b) seasonally adjusted
data; (c) percentage change from previous quarter for non-adjusted data and (d) percentage change
from previous quarter for seasonally adjusted data.

ly non-adjusted data. Out of several economic variables studied, private equipment invest-
ment (PEI) and private housing investment (PHI) are explored in detail. In this study we
used the data of these economic variables in the ‘‘Annual Report on National Accounts’’
by the Economic Planning Agency, Government of Japan.

3.1 Private equipment investment (PEI)

Figure 1 shows the quarterly time series of Japanese PEI at constant price from the first
quarter of 1955 to the first quarter of 1989 (137 data points). Figures 1a and ¢ show the time
series of the seasonally non-adjusted (original) data and its percentage change from previous
quarter, respectively. The latter is referred to as detrended data for convenience sake in
this paper, since the percentage change is widely used for detrending (however, in
actual fact, choice of a detrending method for economic time series is not a very simple
‘problem [Chen (1988)]). Therefore, it is not sure that the percentage change is the best
detrending method for the PEI time series. The same is true for other economic variables
discussed below.

Figures 1b and d, which correspond to Fig. 1a and c, respectively, show the seasonally
adjusted time series of PEI calculated in annual rate. The seasonal adjustment was perform-
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Figure 2 Correlation integrals (G-P plots) for the time series, (a)-(d) of PEI given in Fig. 1. The embedding
dimension d=1, 2, ..., 15 is taken as a parameter.
Al

ed by the Census Method 11 (X-11).

Figures la and b, the non-adjusted and adjusted data involving trend, reveal exponen-
tial growth. Naturally the adjusted data (Fig. 1b) is more smooth than the non-adjusted one
(Fig. 1a). On the other hand, the detrended non-adjusted time series (Fig. 1c) looks more
periodic (or less erratic) than the detrended adjusted one (Fig. 1d).

Figure 2 shows the G-P plots of PEI data given in Fig. 1. Each correlation integral is
calculated for various embedding dimensions (d=1, 2, ..., 15). As shown in Fig. 2, the cor-
relation integrals are not necessarily straight in the whole region of ¢, although the correla-
tion dimension is defined from slopes of the plots. Therefore we must carefully choose the
linear regions in the G-P plot.

In order to illustrate how the correlation dimension is determined from the G-P plot,
the analysis of the G-P plots for the detrended non-adjusted data (Fig. 2c) is shown in Fig. 3
as an example. In the analysis intermediate region of ¢ is divided into four regions. Since
C(¢) becomes saturated at one for too large ¢, and since the noise of the data resulting from
the shortage of the pairs separated by small ¢ dominates for too small g, the region of very
large ¢ and that of very small ¢ are not taken into account.

Figures 3b-e reveal the dependence of the slope D, on the region in which it is measured
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Figure 3 Dependence of a slope of the G-P plot on a region of ¢. The slopes of the G-P plots given in Fig. 2(c) are
measired at four regions of & [(b) to (¢)], namely, (b) 0.2<£<0.3 (c) 0.3<£<0.48 (d) 0.6<£<0.77 (¢)
0.8<e<1.12.

(the slope is calculated by the linear regression method in each region). Clearly the slope
diverges in the region c as the embedding dimension d increases. On the other hand, the
slopes in regions d and e have plateau regions for relatively heigher embedding dimensions.
The correlation dimension is defined as the saturated value of D,. In this sense, although the
correlation dimension can be definitely determined in the region e (D,=1.95, if averaged
over the range 6 =d =12), it is relatively ambiguous in the region d because of the fluctuation
of the slopes (D,=1.61 if averaged over the range 3=d=15). In the region b the slope
saturates in the range 4=d =8 (mean D, value is 2.28 over this region), but increases beyond
d=38. Since it is known that the G-P plots for the embedding dimensions considerably larger
than the actual correlation dimension sometimes give rise to an unexpected increase of the
slope, the increase of the slopes beyond d=28 in Fig. 3b is considered to be artifact. Conse-
quently the plateau at d=4 through 8 is significant. Based on such a consideration, it is
necessary to define some criterion to determine the correlation dimension from the slopes of
the G-P plot.

The correlation dimension of a system is determined according to the following
criterion in this study. First of all, the essentially straight regions in the G-P plot are detected
and a slope of the region is measured. The straightness of the G-P plot in each region is
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Figure 4 Slopes of the G-P plots (a)-(d) given in Fig. 2.

assessed by the correlation coefficient of the regression line. Then the slope is plotted against
embedding dimension d. There are two cases of in the plot of slope for correlation integral
versus embedding dimension. The first case is that the slope becomes almost constant for d
larger than a certain embedding dimension d;. The case that the slope saturates at d;, but
resumes increasing at a certain dimension d, larger than d,(e.g., Fig. 3b) is also included in
this case. However, if the former type plot is obtained besides the latter type one, the latter
type plot is discarded. If the G-P plot have several linear regions and consequently more
than one slopes are obtained, the slopes measured in the region of the smallest distance &
(lower left region in the G-P plot) is taken. This criterion reflects the fact that the correlation
dimension is defined as the limit of small ¢ in a strict sense as shown in eq. (2.4). However, as
a matter of fact, it is very hard to determine proper linear region in the G-P plot thoroughly
automatically. As a result there still remains ambiguity in the determination of the correla-
tion dimension. The second case is that the slopes diverge without any plateau regions as d
increases. For this case we regard that the system has no correlation dimension.

Figure 4 shows the slopes calculated from Figs. 2a-d, together with correlation
coefficients of regression lines determined for the slope. The very high correlation
coefficients of greater than 0.98 throughout this study indicate that the G-P plots in the
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Figure 5 The $ame as Fig. 1, but for PHI (private housing investiment).

region where slopes are calculated are almost on a straight line. The correlation dimensions
of detrended non-adjusted and detrended adjusted data (Figs. 4¢c and d, respectively) are
near 2 from the range 8 =d =15, respectively. On the other hand, since the slope of the non-
adjusted data including trend (Fig. 4a) gradually increases as the embedding dimension in-
creases, we conclude that the correlation integral has no correlation dimension. Although
the slope for the adjusted data including trend (Fig. 4b) seems to converge for relatively
larger embedding dimensions, it does not have a plateau region for relatively smaller em-
bedding dimension (i.e., d < 10). It is hard to determine the correlation dimension definitely
for this case.

3.2 Private housing investment (PHI)

Next, we investigate the properties of the Japanese PHI data at constant price for the
same period as the PEI data above. The time series data are shown in Fig. 5 in the same way
as Fig. 1; Figures 5a and c are the time series of non-adjusted (original) data and its percent-
age change from previous quarter, respectively, and Figs. 5b and d the time series of the
seasonally adjusted data including trend and its percentage change from previous quarter,
respectively. As seen in Figs. Sa and ¢ PHI increased exponentially before the first oil shock
(in 1974), but became stagnant after that (even declined in the early 1980s), and again turned
to increase in the late 1980s. On the other hand, detrended non-adjusted data (Fig. 5c¢) looks
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Figure 6 The same as Fig. 2, but for PHI.

more periodic than detrended adjusted one (Fig. 5d).

Figure 6 shows the correlation integrals for the PHI time series. They are also
calculated for embedding dimensions d=1 to 15.

Then the correlation dimensions are determined. The slopes versus embedding
dimension plots utilized to determine the correlation dimensions are shown in Fig. 7. As
for the correlation dimensions for the data not detrended (Figs. 7a and b), it is well defined
for Fig. 7b, while there are two plateaus for Fig. 7a. The correlation dimension of detrended
non-adjusted data (Fig. 7¢) is obtainable from the region 4=d=8. On the other hand, no
correlation dimension is defined in the detrended adjusted data (Fig. 7d).

4. Discussion

In the previous section it is found that the seasonal adjustment (or a certain averaging
process) of economic data, which is most conventional approach, sometimes changes the
underlying dynamical structures which the original data has. The changes in the structure
may give rise to the change in the correlation dimension. Three cases of changes (including
the case in which no change occurs) are found in the study: (a) no correlation dimension ex-
ists for the adjusted data, while a finite correlation dimension is obtained for the non-
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Figure 7 The same as Fig. 4, but for PHI.

adjusted data, (b) no correlation dimension exists for either data, and (c) finite correlation
dimensions are obtained for both data.

As for the case (a), the reason why the economic structure change in such an averaging
operation is considered as follows. Since for the non-adjusted data a finite correlation
dimension is obtained, the time series in such a system is likely to be generated in a certain
kind of deterministic mechanism. However, the averaging of the data makes it approach to
random numbers (i.e., it obeys the law of large numbers). As a result of such randomization
the correlation dimension cannot be determined from the correlation integral for the
adjusted data in some cases (e.g., for Gaussian noise, the slope diverges as the embedding
dimension d increases [e.g. papers in the book edited by Mayer-Kress (1986)]). It is the case
of PHI detrended data (Figs. 7c and d). Hénon map and z variable in the Lorenz equation
also correspond to this case [Nagai, Inaba, and Wako, (1993)]. For the data categorized
into this case one should be careful that the seasonally adjusted data looses some kind of
information they have in their structure.

In the case (b) there has no correlation dimension for either the non-adjusted or ad-
justed data. This case is very difficult to find the determinisity in the system generating such
data.

In the case (c) the finite correlation dimension is obtained even for adjusted data, in
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spite of averaging. PEI belongs to this class. In PEI the correlation dimension of the
seasonally adjusted data gets lower than that of the non-adjusted data. Altho is not
sure whether or not the amount of decrease is significant, if so, it is interesting in the follow-
ing sense. As shown in the previous work [Nagai, Inaba, and Wako (1993)] the correlation
dimension of the averaged data becomes lower than the correlation dimension of the
original data in x variable of Lorenz equation. Therefore, if a correlation dimension for the
adjusted data smaller than that for the non-adjusted data is obtained, it implies that the
economic data is generated from the similar mechanism to Lorenz system in some sense. In
the Lorenz system the correlation dimension becomes smaller by averaging operation of x
variable, since it compresses butterfly-shaped Lorenz attractor into caterpillar-shaped
attractor lying between two unstable fixed points. In this case the procedure to adjust the
original data provides useful information about the system analyzed.

At present there is no reliable approach to identifying deterministic chaos in economic
data, overcoming the shortage of the data points. Furthermore, knowledge of the exact cor-
relation dimension does not necessarily mean that the dynamical structure of the economic
variables investigated can be enough understood. However, the analysis described here pro-
vide very suggestive information about the dynamical structure, and it is emphasized in this
paper that comparative study between seasonally adjusted and non-adjusted data can add
more information to it.
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