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On a Sub-Program to determine the Rayleigh Quotient
by Conjugate Gradient Method

Kunio SHIMOYAMADA™

Introduction

This paper is represented for a sub-program in order to determine the eigenvalue with
respect to the continuous elastic system by applying the conjugate gradient method to
Rayleigh quotient. This numerically computational method has been known as iterative
method, and frequently used in order to compute the algeraic equation with several
variables or large dimensional algebraic equation for elastic-plastic problems by Yamada
[1]. The auther also reported for eigenvalue problems of the continuous system in which
this method were applied to Rayleigh quotient [2].

The advantages which this method is used are expressed in Ref. [3], therefore they
are abbreviated in this paper. In applying this method Rayleigh quotient is used in order
to numerically compute the eigenvaluc instead of directly computing its from other
method. The results are illustrated for the typical engineering examples.

1 Analysis System for Eigenvalue

Consider the continuous elastic system subjected to the concentrated axial forces, as
shown in Fig. 1. In which p, 4, EI and L are density per unit length, cross-sectional
area, bending rigidity and total length of beam, respectively.
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Fig. 1. Simply supported bzam subjected to axial forces

The characteristic equations of eigenvalue of dynamic and static problems are gcnerally
expressad as,

[Ke] = Po[Kg]—Q[M]}G=0, (1)
or
([Ke]—/[Kg]}=0. (2)

In which [Ke], [Kg] and [M] are total stiffness, stability and mass matrices, rcspectively,
€ eigen cicular frequency when the beam is subjected to the conczntrated axial loads,
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J critical value of buckling. Note that Egs. (1) and (2) are formulated by the standard
finite element method. The solution of the above equations can be obtained by com-
puting the determinant as follow,

|[Kel— Po[Kg]—Q*[M][|=0, (3)
or
|[Ke]—-~[Kg]|=0. (4)

Note that eigen circular frequency of free vibration can be dircctly obtained from Eq.(3)
in P,=0.

2 Algorithm of Conjugate Gradient Method

In this paper, Rayleigh quotient is used in order to obtained the eigenvalue instead of
directly computing of Eqgs. (3) and (4) stated above. The algorithm is shown as follow.
The Rayleigh quotient for dynamic and static problems is expressed as,

GTIMG. )
Ri= Gk, )
in which note that matrix [Kg]in the stability problems is corresponding to matrix [M]
in the dynamic problems.

The value of this quotient will be a minimum when the displacement vector § is that
which most closely approximates the actual mode shape. The applying the conjugate
gradient method to Eq. (5), it s, in the first, necessary to find the g; of R;. Differentiating

Eq. (5) with respect to g7 in order to obtain g; yields subsequently,

CR;

= g (K14 - RIM1G).
therefore, the direction of gradient is difined by
gi=[K14;—R,[M]q,. (6)
The minimization proceeds step i to step i+ 1 by computing vector §,,, in step i+ 1
from vector §; in step i as follow,

Gir1=q:+o; P,
where vector P, , is orthogonal with respect to [K], and «; is determined by minimizing
R,. The substitution of Eq. (7) into Eg. (5) and its differentiation with respect to z;
viclds subsequently,

eR, 1

Gzir'—rq.vi,[MM;P?‘[M]a.-H)(ci?[M]am—(cﬂﬂ[KJJHI)(P,T[M]%). (7)

The minimum value of R will occur where this partial derivative in zero. The extreme
value will be obtained by solving the following equation,

(PTLK13 oGl M1 :e)) — (T (K1 (PTIM ]G0 =0. (8)
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Substituting Eq. (7) into Eq. (8), the quadratic equation with respect to 2x; can be
subsequently obtained as,

ax?+ba;+c¢=0,
where the coeflicients a, b and ¢ are of the forms as,
a=(PT[KIP)(GT[KIP;) —(GT[K]P)PT[M]P)),
b=(PTLKIP)(GTIM13,)—(GTIK1G){GTIMIP)).
c=(GILKIP)(GT[M]G,)—(GT[K]1G ) (PT[M]G)).
The two roots with respect to %; are computed from

_ h2 -
2, = b+ b*—4ac Si=1,2).
2a

One of the two roots can be selected to minimizing quotient R obtained by substituting
these into Eqgs. (5) and (7), as shown in Fig. 2.

R

/“\

Fig. 2. Representative variation of Rayleigh quotient a line

Vector P, in step i+ 1 is determined from the gradianet §,, , and vector P, obtained
from the previous step by using the following formula,

Pivi=§i1+B:P; (9)

where f; is a constant coefficient and is found by requiring that P, and P,., are ortho-
gonal with respect to [K]. Therefore the value of f§; is given by,

PT[K1Gis

Pi= = pitk1p, (1o

The algorithm can be surmarized as,
1. Initialization (i =0)
do=given arbitrary constant,
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do=R(go),
P 0=Jo-
2. Next step iteration
(1) compute a;,

(2) compute Qi+1=qi+“iﬁz,

i [K 14,
3) compute R; :—61,‘4[——;‘“
3) P gl MG,
(4) compute §;4;=[K]1G;+1—Riv [M]1G;4,
. _ _PIK1Gi
(5) compute f=— PILK]P,

(6) compute P, =g +B:P;

The iteration are carried out to obtained the convergent value of R.
vergent value can be given as follow,

[Ris1— Ry <e,
where e is the condition of covergence.

3 Numerical Example and Conlusion

The then con-

Consider the simply supported uniform beam subjected to the concentrated axial forces

at both ends, as shown in Fig. 1. In which mass, stiffness and stability matrices can be

obtained by means of applying the standard finite element method, respectively. These

are denoted as follow,

- o1s6 221 sa _13f
_ pAl| 22/ 472 13/ —3/2
mil= 7
1= 54 1y 156 =221
L - 13/ —3/2 =22/ a/2
A ) 6/ —12 6/
El 6/ 472 —6J 572
[ke]=7
L -2 -6 12 -6l
6/ 212 —6/ 4]
r 6/s /10 —6/5 /10 7
[k,]= P, | /10 212]15 —1[/10 —[?/30
T s —1/10 6/s —1/10 |

/10 —=12/30 —7/10 2I%/15 _

Each of the above element matrices must be assembled for the given entire structural
system when these are employed to practical problems. R value corresponding to
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eigenvalue, w?, of transverse free vibration and critical buckling value, P,,, can be ex-

cr?

pressed as follow,

- 2/’AL4=‘71'T[K€]ZI£= 4
R=o™"pr = qitmia, =™

L? _ gl[Kelq

F T T 2= 77:2-
T EI GI[Kglq;

R=P

The results are shown for two kinds of the finite element in Table 1. The each of (2)

and (4) in Table [ expressed on the divided number of finite elements. The results are

expressed that the four divided finite elements are sufficiently satistied when the com-
putation is carried out for the practical problems.

Table 1 A Comparison of eigenvalues

N’/”;‘Off error °, P., é_} error °,
- o \ _ _
Theory | 9.87 9.87
Present 97A91(72)7W ) 0.747”777 7 97,794(72)7 7 0.7
solution 9.88(4) 0.1 9.89(4) 0.2

The sub-program is shown in Appendix. Note that EPS=10-5 for the condition
of convergence and total length L =450 [mm] of the beam are given in order to carry
out this computation.
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Appendix

This appendix shows the program for algorithm represented in this paper. When
this program is used, we would be required to prepare the subroutine in order to
operate, for example, the form of “G7[K]§" and to clear the vector (VECMAT and
CLVEC in this program, respectively)
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FACOM 230 C52/vS FORTRAN 5 V=03 L=7C

SOURCE
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List

#er CONJUGATE GRADJENT METHOD wesanus
AK=COKRESPOND [NG TO STIFFNESS MATR[X
BM=CORRESPONDING TO MASS UK STARILITY MATKIX
Ge=U ISPLACEMENT VECTOR

D= UDGEMENT OF ROUT CF QUADRRATIC EWUATIOUN
NRED= DIMENS[ON FOR CALCURATLUN
RNELM=DIMENSTON OF MATRIX

SUBROUT INE FUMCG(AK »BM,RAL,D/NKED,NELM, 4, ERPS)

DINENSTON AKINELMANELMY B4 (RELMONELM) 5 (NELM)
VINENSION P(30),49G(30),6D(30),0L0P(2C) ,0LD6(30) »C(30),G5(30)

COMPUTE FOR [NITIAL ARGUMUNT»
CALL CLVEC(4,NELM)
ARBITRARY VALUE GIVEN TO ALL COMPONENT GF DISPLACEMENT n([)
DO 20 [=1,%RED
“(i)=1.0
CoMPLTE THE EACKH FACTOR FOR INITIAL RAYLZIGM QUCTIENT
CALL CLVEC{C.NELM)
CALL VECMAT(CL, 9,8, AK,C, NRED,NELM)
CALL CLVEC(C,NEL™)
CALL VECMAT(C2,8,4,BM, C NRED, NELM)
COMPUTE THE INITIAL RAYLEIGH wyOTIENT
RAL=Cl/C2
wiITE(6,50) RAL
COMPUTE THt GRAUIENT VECTUR 6G(1)
00 60 1=1,NRED
$20.0

¢ 70 J=1,NRED

S=S+(AK (1, ) =RAL#BM (1, J)) »u(d)
CONTINUE
GG(1)=S
CONT INVE
#ews ORTHOGONAL VECTOR wewes P(]) 4eea
DO 8C [=1,NRED
P =6G(1)

ONTINVE
wen NEXT STEP [TERATION senas
K=0

CONTINVE

K=K+l

R=RAL

DC 90 [=1,NRED
oLbuCly=a(l)
oLo= (=P (1)

CONTINUE
CALL CLVEC(P,NELM)
CALL CLVEC(Q,NELM)
CALL CLVEC(GAR.~EI MY
COMPUTE THE FACTOR OF QUADRATIC EGUATION
CALL VECMAT(D1,0LDPsOLDP,AK,C,NRED,NELM)
CALL CLVEC(C,NELM)
CALL VECMAT(D2,0LD9,0L2P,5M,C,NRED, NELM)
CALL CLVEC(C,NELM)
CALL VECMAT(D3,0LD0,0LOP,AL,CLNRED,NELM)
CALL CLVEC(C.NELM)
CALL VECMAT(N&,0LDP»OLOP, oM, C, NRED,NELM)
Aa=(01#D2)=(D3#D4)
CALL CLVEC(C,NELM)
CALL VECMAT(D1,0LOP,OLIP,AK,C,NRED,NE M)
CALL CLVEC(C,NEL™)
CALL YECMAT(02,0L04s0LDG,0MsCoNRED,NELM)
CALL CLVEC(C,NELM)
CALL VECMAT(D3,0LD8,0L06,AK,C, LRED,NELM)
CALL CLVEC(C,NELM)
CALL VECMAT(D4,0LDP»OLDP,3M, C,NRED,NELM
CALL CLVEC(C,NELM)
3B=(D14D2)=(D3#D4)
CALL VECMAT(D1,0L0P,0L08, A%, C,NRED,NELM)
CALL CLVEC(C,NEL™)
CALL VECMAT(D2,0LD4sGLYG,BM,C NRED,NELM)
CALL CLVEC(C,NEL™
CALL VECMAT(D3,0L04,0LDG,AK,CoNRED,NELM)
CALL CLVEC(C,NELM)
CALL VECMAT(D4,0LDP,OLDG,BM4sCoANRED,NELM)
CCa(D1#D2)=(D34D4)
CALL QUAD(AA,BB,CC,D,X1,X2)

[F(D.LT.0,0) GO TG 1520
*es COMPUTE THE DISPLACEMENT VECTOR Q@ 30, esss0e
00 190 1=1.NRED
@ (1)=0L0g () +x1#0LDP (1)
wD (1) =CLDe 1) +x2#0LDP (1)
CONTINUE
*#» COMPUTE THE RAYLEIGH WUOTIENT RAL [N N=STEP
RAL=0,0
CALL CLVEC(C,nELM)
CALL VECMAT(D1,Qu,d6,AK,C,NRED,NELM)
CALL CLVEC(C/NEL™W)
CALL VECMAT (02,86, 3%,B4,C,NRED,NELM)
CALL CLVEC(C,NELW)
CALL VECMAT(D3,8D,ud,AK,C,NRED,NELM)
CaLt CLVEC(C,NELM)
CALL VECMAT(D4,30,8D,5M,C,NRED,NELM)
RAL1=D1/02
RALL23D3/04
TF(RALLLLT.RAL2.ANDLRALLLGT.0,0) G0 TO 2900
RAL=RAL2

TF(RAL,LT,.0.0) GO TO 1500
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TIME 14,26 PAGE 0001
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FACOM 230 0S2/vS FURTRAN < FuMCs v=03 =70

SOURCE

119

2000

<

13

16C

1510

1500
152¢

50
170
180
190
200

LisT

DO 110 [=1,NRED

(IS RL IS

CONT ENUE

IF(ABS (R=RAL) JLTLEPS) GO TU 1510
GO TO 1600

CONT jnyE

RAL®RALL

IF(RAL.LT.C.0) GO TO 1300

00 120 I=1,NRED

@(I)=6()

TF(ABS(R=RAL) LT, EPS) 00 TU 151C
#upe COMPLTE TrE N=STEP GRADIENT VECTOR scesns
CONTINUE

DU 120 I=1,NREVL

S=¢.0

0O 140 J=1,NKED

S=S+ (K (1, ) ~RALEBM (i, ) #(J
CONTINUE

GG(1)=S

CONTINUE

#se COMPUTE THE ORTMOGUNAL  VECTOR P TO AK
CALL CLVEC(C,NELM)

CALL VECMAT(D1,0LUF,GG,AK,CoNREL, NELM)
CALL CLVEC(C,NELM)

CALL VECMAT(D2,0L0P,CLOP,AK,C, NRED,NELM)
BETA==(01/D2)

D0 166 1=1,nFED
PLI)=(GGUI)+BETA®CLOR(]))
CONTINUE

CALL CLVEC(C,NELM)

CALL CLVEC(OLDP.NELM)

CALL CLVEC(OLD&,NELM)

GO TC 10600

ARITE(6,200) K

wRITE(6.180) RALL.RAL2.RAL
RETURN

wRITE(6,170)

RETURN

wWRITE (6,190

RETURN

FORMAT (/5x,4rRkAL=,E15,T)

FORMAT(/5%,30X, 'Ors# OBTAINED NEGATIVE RALE]GH QUONTIENT#s

NATE 82,01.28

'y

FORMAT (1H ,5X,5HRALL=,E15,7,10X,5HRAL2=,E15,7,10X,4HRAL=,E15,T)
FOHMAT(/5x%,' #OBTAINED NEGATIVE ROOT OF QUADRATIC EQUATION » 'y

FORMAT (LK ,15,1X,14HSTEP JTERATION)
END
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