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Abstract: Let q be a faithful irreducible character of the cyclic group Cn of order pn, where p is an odd prime.
We study the p-group G containing Cn such that the induced character qG is also irreducible. The purpose of this
paper is to consider the subgroup NG(NG(Cn)). We will determine the factor group NG(NG(Cn))/NG(Cn).
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1. Introduction

Let G be a ˆnite group. We denote by Irr(G) the set of
complex irreducible characters of G and by FIrr(G) (⊂
Irr(G)) the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we
denote by Cn the cyclic group of order pn. A ˆnite group G
is called an M-group, if every q∈Irr(G) is induced from a
linear character of a subgroup of G.

It is well-known that every nilpotent group is an M-
group. Hence, when G is a p-group, for any x∈Irr(G),
there exists a subgroup H of G and a linear character q of
H such that qG＝x. If we set N＝Ker q, then NH and q is
a faithful irreducible character of H/NCn, for some
non-negative integer n. In this paper, we will consider the
case when N＝1, that is, q is a faithful linear character of
HCn.

We consider the following:

Problem 1. Let p be an odd prime, and q be a faithful
irreducible character of Cn. Determine the p-group G such
that Cn⊂G and the induced character qG is also irreduci-
ble.

Since all the faithful irreducible characters of Cn are al-
gebraically conjugate to each other, the irreducibility of
qG (q∈FIrr(Cn)) is independent of the choice of q, and
depends only on n.
This problem has been solved in each of the following
cases:

(1) CnG ([2]),
(2) G has a subgroup H containing Cn such that CnH

and [GH]＝p ([6]).
(3) [GH]＝p3 ([7]).
On the other hand, when p＝2, Yamada and Iida [4]

proved the following interesting result:
Let Q denote the rational ˆeld. Let G be a 2-group and x

a complex irreducible character of G. Then there exist sub-

groups H N in G and a complex irreducible character q
of H such that x＝qG, Q(x)＝Q(q ), N＝Ker q and

H/NQn(n2), or Dn(n2),
or SDn(n3), or Cn(n0).

Here, Qn, Dn and SDn denote the generalized quaternion
group, the dihedral group of order 2n＋1 (n2) and the
semidihedral group of order 2n＋1 (n3), respectively, and
Q(x)＝Q(x(), ∈G).

They considered the following:

Problem 2. Let q be a faithful irreducible character of
H, where H＝Qn or Dn or SDn. Determine the 2-group G
such that H⊂G and the induced character qG is also ir-
reducible.

Yamada and Iida [3] solved this problem in the case
when [G; H]＝2 or 4 and we have recently solved Problem
2 completely ([8]). In [8], we showed that

G＝NG(H ) or NG(NG(H )),

for all H＝Qn or Dn or SDn, if G satisˆes the conditions of
Problem 2. Here, as usual, NG(H ) and NG(NG(H )) are the
normalizers of H and NG(H ) in G, respectively. This
means that, if we deˆne subgroups of G by

M1＝NG(H ), and Mi＋1＝NG(Mi), for i1,
then

HM1M2＝M3＝M4＝…＝G,
for all H＝Qn or Dn or SDn. Concerning Problem 2, see
also [5].

In this paper, we consider Problem 1. We also deˆne
subgroups of G by

N1＝NG(Cn), and Ni＋1＝NG(Ni), for i1.
The purpose of this paper is to consider the group N2＝NG

(NG(Cn)). We will determine the structure of the group
N2/N1.

Throughout this paper, Z and N denote the set of ra-
tional integers and the natural numbers, respectively.
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2. Statements of the results

For the rest of this paper, we assume that p is an odd
prime.

First, we introduce the following groups:
( i ) G(n, m)＝〈a, bm〉with

a pn

＝bpm

m ＝1, bmab－1
m ＝a1＋pn－m

, (m≦n－1).
( ii ) G(n, m, 1)＝〈a, bm, [〉(G(n, m)＝〈a, bm〉) with

a pn

＝bpm

m ＝1, bmab－1
m ＝a1＋pn－m

,
[a[－1＝a1＋pn－m－1

bpm－1

m ,
[p＝bm, [bm[－1＝bm (2m≦n－1).

(iii) G(n, 1, 1, 1)＝〈a, b1, [, x〉(G(n, 1, 1)
＝〈a, b1, [〉) with
a pn

＝bp
1＝1, b1ab－1

1 ＝a1＋pn－1

, [a[－1＝a1＋pn－2

b1,
[p＝b1, [b1[

－1＝b1, xax－1＝a1＋pn－3

[, x p＝[,
x[x－1＝[, xb1x－1＝b1 (7≦n).

We can see that G(n, m, 1) (resp. G(n, 1, 1, 1)) is an exten-
sion group of G(n, m) (resp. G(n, 1, 1)) by using Proposi-
tion 1 below:

Proposition 1. Let N be a ˆnite group such that G N
and G/N＝〈uN〉is a cyclic group of order m. Then um＝c
∈N. If we put s(x)＝uxu－1, x∈N, then s∈Aut(N) and
(i) sm(x)＝cxc－1, (x∈N ) (ii) s(c )＝c.

Conversely, if s∈Aut(N ) and c∈N satisfy ( i ) and ( ii ),
then there exists one and only one extension group G of N
such that G/N＝〈uN〉is a cyclic group of order m and
s(x )＝vxv－1 (x∈N ) and [m＝c.

Proof. For instance, see [9, III, 7].

The structure of the group N1＝NG(Cn) was determined
by Iida([2]).

Theorem 0.1 (Iida [2]) Let G be a p-group which con-
tains Cn as a normal subgroup of index pm. Let q∈
FIrr(Cn). Suppose that qG∈Irr(G). Then m≦n－1, and G
G(n, m).

On the other hand, N2＝NG(N1) and N3＝NG(N2) were
determined, when [N1Cn]＝p ([7]).

Theorem 0.2 ([7]) Let p be an odd prime. Let G be a p-
group which contains Cn＝〈a〉. We assume that [GCn]
p3. Deˆne the subgroups of G by

N1＝NG(Cn), and Ni＋1＝NG(Ni), for i＝1, 2.
Let q∈FIrr(Cn). Suppose that qG∈Irr(G), and [N1Cn]
＝p. Then

(1) N2/N1C1 and N2G(n, 1, 1),
(2) N3/N2C1 and N3G(n, 1, 1, 1).

REMARK 1. Conversely, it is easy to see that the groups
G(n, 1, 1) and G(n, 1, 1, 1) satisfy the condition (EX, C ),
which is deˆned in section 3 of this paper. Hence these
groups satisfy the conditions of Problem 1.

REMARK 2. By results of Iida ([2], see Theorem 0.1. in

this paper), we can see that N1G(n, 1).

Our main theorem is the following:

Theorem. Let p be an odd prime. Let G be a p-group
which contains Cn＝〈a〉. Deˆne the subgroups of G by

N1＝NG(Cn), and N2＝NG(N1).
Let q∈FIrr(Cn). Suppose that qG∈Irr(G), and [N1Cn]
＝pm, 4m≦n. Then

N2/N1Ct where t≦m.

3. Some preleminary results

In this section, we state some results concerning the
criterion of the irreducibilities of induced characters and
others, which we need in section 4.

We denote by z＝zpn a primitive pnth root of unity. It is
known that, for Cn＝〈a〉, there are pn irreducible charac-
ters qn (1≦n≦pn) of Cn:

qn(ai)＝zni, (1≦i≦pn).
The irreducible character qn is faithful if and only if (n, p)
＝1.
It is well-known that

Aut〈a〉(Z/pnZ )C＊×Cn－1

where (Z/pnZ)is the unit group of the factor ring Z/pnZ
and C＊ is the cyclic group of order p－1. Further, Cn－1 is
generated by the element 1＋p in Z/pnZ.

First, we state the following result of Shoda (cf [1, p.
329]):

Proposition 2. Let G be a group and H be a subgroup
of G. Let q be a linear character of H. Then the induced
character qG of G is irreducible if and only if, for each x∈
G－H＝{∈G|/∈H}, there exists h∈xHx－1∩H such
that q(h)≠q(xhx－1). (Note that, when q is faithful, the
condition q(h)≠q(xhx－1) holds if and only if h≠xhx－1).

Using this result, we have the following:

Proposition 3. Let〈a〉＝Cn⊂G, and q be a faithful ir-
reducible character of Cn. Then the following conditions
are equivalent:

(1) qG is irreducible,
(2) For each x∈G－Cn, there exists y∈〈a〉∩x〈a〉x－1

such that xyx－1≠y.

DEFINITION. When the condition (2) of Proposition 3
holds, we say that G satisˆes (EX, C).

Let H be a group. For a normal subgroup N of H, and
any , h∈H, we write

≡h (mod N ),
when －1h∈N. For an element ∈H, we denote by ||

the order of .

4. Proof of Theorem

Let q∈FIrr(Cn). Since qG＝(qN1)G∈Irr(G), we must
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have qN1∈Irr(N1). Therefore, by Theorem 0.1, we can
take an element b∈N1－Cn＝{∈N1|/∈Cn} such that

N1＝〈a, b|a pn

＝bpm

＝1, bab－1＝a1＋pn－m

〉G(n, m).
for some m∈N.

Note that any element in N1＝〈a, b〉is represented as
aibj for some i, j∈Z, 0≦i≦pn－1, 0≦j≦pm－1.

To prove the theorem, we need the following:

Lemma 1. Let p be an odd prime and n, m, k, j be in-
tegers satisfying 0≦m≦n－1. Then, if we put
s＝1＋kpn－m, we have the following equality:

s jpm

－1
s j－1

≡pm (mod pn).

Proof of Lemma 1. We can show this by direct calcula-
tions.

Lemma 2 For any integers i, j, the following equalities
hold.

( i ) ab≡ba (mod〈apn－m

〉).
( ii ) bapm

b－1＝apm

.
(iii) (aibj)pm

＝aipm

.

Proof of Lemma 2. (i), and (ii) can be shown by direct
calculations.

(iii). If we put s＝1＋pn－m, we have
(aiu j)p

m

＝ai(spmj－1/s j－1)upmj＝a pmi,
by direct calculations and Lemma 1.

Let fN2 → N2/N1 be a natural epimorphism of
groups. For u∈N2, we write o(u) for the order of f (u) in
N2/N1. We can show the following:

Claim I. If u∈N2, then o(u)≦pm.

Proof of Claim I. Take an element x∈N2. and write o(x)
＝pt. We will show that t≦m.

Write xax－1＝ai0bj0 and xbx－1＝ad0bt0. Since
xapm

x－1＝apmi0,
by Lemma 2 (iii), we must have ( p, i0)＝1.
On the other hand, since

1＝xbpm

x－1＝ad0pm

,
we have

d0≡0 (mod pn－m).
Therefore, we may write d0＝pn－md and

xbx－1＝a pn－mdbt0,
for some d∈Z. Since n－mm, by our assumption, we
have

xapn－m

x－1＝apn－mi0. (1)
Taking the conjugate of both sides of the equality, bab－1

＝a1＋pn－m

by x, we get
(a pn－mdbt0 )(ai0b j0 )(a pn－mdbt0 )－1＝ai0b j0a pn－mi0.

Hence, we have
ai0(1＋pn－m )t0b j0＝ai0(1＋pn－m )bj0.

Therefore,
i0(1＋t0･pn－m)≡i0(1＋pn－m) (mod pn).

But ( i0, p)＝1, so we get t0≡1 (mod pm), and hence
xbx－1＝a pn－mdb. (2)

Note that〈apn－m

〉is a normal subgroup of N2, by (1).
It is easy to see that

xbx－1≡b (mod〈a pn－m

〉).
ba≡ab (mod〈a pn－m

〉).
Further, we have

xa lx－1＝(ai0bj0 )l≡ai0 lb j0 l (mod a pn－m

〉).
for any l∈N.
Using these relations repeatedly, we get

x sax－s≡ais
0b j0(i

s－1
0 ＋･＋i0＋1) (mod〈apn－m

〉),
for any s∈N.
In particular,

x pt

ax－pt

≡ai pt
0 b j0(i

pt－1
0 ＋･＋i0＋1) (mod〈a pn－m

〉).
Hence we may write as

x pt

ax－pt

＝aipt
0 ＋rpn－m

b j0(i
pt－1
0 ＋･＋i0＋1),

for some integer r.
Since xpt

∈N1＝〈a, b〉, we must have
i pt

0 ≡1 (mod pn－m), (3)
and

j0(i pt－1
0 ＋･＋i0＋1)≡0 (mod pm). (4)

By (2), we can write as i0＝1＋k0ps, for some integers k0

and s, 1≦s. So,

j0(i pt－1
0 ＋･＋i0＋1)＝j0 Ø i pt

0 －1
i0－1 »＝j0 ptl,

for some integer l, ( p, l )＝1.
Suppose that t≧m＋1, then

j0(i pt－1－1
0 ＋･＋i0＋1)≡0 (mod pm),

so, we have xpt－1

∈N1, which contradicts our hypothesis
that o(x )＝pt. Thus the proof of Claim I is completed.

Take an element x∈N2. Let o(x)＝pt, 0≦t≦m, and
write xax－1＝ai0bj0. We have shown, in the proof of Claim
I, that

i pt

0 ≡1 (md pn－m),
and

j0 pt≡0 (mod pm),
So, we can write as i0＝1＋kpn－m－t, and j0＝jpm－t for

some integers k and j, ( p, j )＝1.
Summarizing the results we can write as

xax－1＝a1＋kpn－m－t

bpm－tj,
xbx－1＝a pn－mdb, (5)

for some k, j, d∈Z.
Deˆne t0＝max{o(x)|x∈N2}, and take an element x0∈

N2 such that o(x0)＝pt0.
Denote by N 0

1 the subgroup of G generated by x0 and the
elements of N1. Then

[N 1
0N1]＝pt0 and N 1

0/N1Ct0.
We will show that

Claim II. N 0
1＝N2.

Proof of Claim II. Suppose that N 0
1
⊂
≠N2. Take an ele-

ment w∈N2－N 0
1＝{∈N2|/∈N 0

1}. Suppose that o( y)＝
ps, then, by the hypothesis, we have s≦t0. By the same
way as in the proof of (5), we can write as
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yay－1＝a 1＋k1pn－m－s

bpm－sj1,
yby－1＝apn－md1b,

for some k1, j1, d1∈Z, ( p, j1)＝1.
On the other hand, we can take the element u∈〈x0

pt0－s〉,
such that

u－1au＝a1＋k2pn－m－s

bpm－s(ps－j1),
u－1bu＝a pn－md2b,

for some k2, d2∈Z.
We then have

u－1yay－1u＝a1＋k3 pn－m－s

,
for some k3∈Z.

This means that u－1y∈N1. So, we have y∈N 0
1, which

contradicts our hypothesis. Thus the proof of Claim II is
completed.

By Claim II, we have N2/N1＝N 0
1/N1Ct0, t0≦m. So

the proof of the theorem is completed.
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