論文 Original Paper

Irreducibilities of the induced characters of some p-groups

Katsusuke Sekiguchi

Abstract

Let ϕ be a faithful irreducible character of the cyclic group C_{n} of order p^{n}, where p is an odd prime. We study the p-group G containing C_{n} such that the induced character ϕ^{G} is also irreducible. The purpose of this paper is to consider the subgroup $N_{G}\left(N_{G}\left(C_{n}\right)\right)$. We will determine the factor group $N_{G}\left(N_{G}\left(C_{n}\right)\right) / N_{G}\left(C_{n}\right)$.

Keywords: p-group, Extension, Irreducible induced character, Faithful irreducible character

1. Introduction

Let G be a finite group. We denote by $\operatorname{Irr}(G)$ the set of complex irreducible characters of G and by $\operatorname{FIrr}(G)(\subset$ $\operatorname{Irr}(G))$ the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we denote by C_{n} the cyclic group of order p^{n}. A finite group G is called an M-group, if every $\phi \in \operatorname{Irr}(G)$ is induced from a linear character of a subgroup of G.

It is well-known that every nilpotent group is an Mgroup. Hence, when G is a p-group, for any $\chi \in \operatorname{Irr}(G)$, there exists a subgroup H of G and a linear character ϕ of H such that $\phi^{G}=\chi$. If we set $N=\operatorname{Ker} \phi$, then $N \triangleleft H$ and ϕ is a faithful irreducible character of $H / N \cong C_{n}$, for some non-negative integer n. In this paper, we will consider the case when $N=1$, that is, ϕ is a faithful linear character of $H \cong C_{n}$.

We consider the following:
Problem 1. Let p be an odd prime, and ϕ be a faithful irreducible character of C_{n}. Determine the p-group G such that $C_{n} \subset G$ and the induced character ϕ^{G} is also irreducible.

Since all the faithful irreducible characters of C_{n} are algebraically conjugate to each other, the irreducibility of $\phi^{G}\left(\phi \in \operatorname{FIrr}\left(C_{n}\right)\right)$ is independent of the choice of ϕ, and depends only on n.
This problem has been solved in each of the following cases:
(1) $C_{n} \triangleleft G$ ([2]),
(2) G has a subgroup H containing C_{n} such that $C_{n} \triangleleft H$ and $[\mathrm{G}: \mathrm{H}]=p([6])$.
(3) $[\mathrm{G}: \mathrm{H}]=p^{3}([7])$.

On the other hand, when $p=2$, Yamada and Iida [4] proved the following interesting result:

Let \mathbf{Q} denote the rational field. Let G be a 2-group and χ a complex irreducible character of G. Then there exist sub-
groups $H \triangleright N$ in G and a complex irreducible character ϕ of H such that $\chi=\phi^{G}, \mathbf{Q}(\chi)=\mathbf{Q}(\phi), N=\operatorname{Ker} \phi$ and

$$
\begin{aligned}
& H / N \cong Q_{n}(n \geq 2) \text {, or } D_{n}(n \geq 2), \\
& \text { or } S D_{n}(n \geq 3), \text { or } C_{n}(n \geq 0) .
\end{aligned}
$$

Here, Q_{n}, D_{n} and $S D_{n}$ denote the generalized quaternion group, the dihedral group of order $2^{n+1}(n \geq 2)$ and the semidihedral group of order $2^{n+1}(n \geq 3)$, respectively, and $\mathbf{Q}(\chi)=\mathbf{Q}(\chi(g), g \in G)$.
They considered the following:

Problem 2. Let ϕ be a faithful irreducible character of H, where $H=Q_{n}$ or D_{n} or $S D_{n}$. Determine the 2-group G such that $H \subset G$ and the induced character ϕ^{G} is also irreducible.

Yamada and Iida [3] solved this problem in the case when $[G ; H]=2$ or 4 and we have recently solved Problem 2 completely ([8]). In [8], we showed that

$$
G=N_{G}(H) \text { or } N_{G}\left(N_{G}(H)\right),
$$

for all $H=Q_{n}$ or D_{n} or $S D_{n}$, if G satisfies the conditions of Problem 2. Here, as usual, $N_{G}(H)$ and $N_{G}\left(N_{G}(H)\right)$ are the normalizers of H and $N_{G}(H)$ in G, respectively. This means that, if we define subgroups of G by

$$
M_{1}=N_{G}(H), \text { and } M_{i+1}=N_{G}\left(M_{i}\right), \text { for } i \geq 1,
$$

then

$$
H \subseteq M_{1} \subseteq M_{2}=M_{3}=M_{4}=\cdots=G,
$$

for all $H=Q_{n}$ or D_{n} or $S D_{n}$. Concerning Problem 2, see also [5].
In this paper, we consider Problem 1. We also define subgroups of G by

$$
N_{1}=N_{G}\left(C_{n}\right) \text {, and } N_{i+1}=N_{G}\left(N_{i}\right) \text {, for } i \geq 1 .
$$

The purpose of this paper is to consider the group $N_{2}=N_{G}$ $\left(N_{G}\left(C_{n}\right)\right)$. We will determine the structure of the group N_{2} / N_{1}.
Throughout this paper, \mathbf{Z} and \mathbf{N} denote the set of rational integers and the natural numbers, respectively.

[^0]
2. Statements of the results

For the rest of this paper, we assume that p is an odd prime.

First, we introduce the following groups:
(i) $G(n, m)=\left\langle a, b_{m}\right\rangle$ with

$$
a^{p^{n}}=b_{m}^{p^{m}}=1, b_{m} a b_{m}^{-1}=a^{1+p^{n-m}}, \quad(m \leqq n-1) .
$$

(ii) $G(n, m, 1)=\left\langle a, b_{m}, v\right\rangle\left(\triangleright G(n, m)=\left\langle a, b_{m}\right\rangle\right)$ with $a^{p^{n}}=b_{m}^{p^{m}}=1, b_{m} a b_{m}^{-1}=a^{1+p^{n-m}}$,
$v a v^{-1}=a^{1+p^{n-m-1}} b_{m}^{p m-1}$,
$v^{p}=b_{m}, v b_{m} v^{-1}=b_{m} \quad(2 m \leqq n-1)$.
(iii) $\quad G(n, 1,1,1)=\left\langle a, b_{1}, v, x\right\rangle(\triangleright G(n, 1,1)$
$=\left\langle a, b_{1}, v\right\rangle$) with
$a^{p^{n}}=b_{1}^{p}=1, b_{1} a b_{1}^{-1}=a^{1+p^{n-1}}, v a v^{-1}=a^{1+p^{n-2}} b_{1}$,
$v^{p}=b_{1}, v b_{1} v^{-1}=b_{1}, x a x^{-1}=a^{1+p^{n-3}} v, x^{p}=v$, $x v x^{-1}=v, x b_{1} x^{-1}=b_{1} \quad(7 \leqq n)$.
We can see that $G(n, m, 1)$ (resp. $G(n, 1,1,1))$ is an extension group of $G(n, m)$ (resp. $G(n, 1,1)$) by using Proposition 1 below:

Proposition 1. Let N be a finite group such that $G \triangleright N$ and $G / N=\langle u N\rangle$ is a cyclic group of order m. Then $u^{m}=c$ $\in N$. If we put $\sigma(x)=u x u^{-1}, x \in N$, then $\sigma \in \operatorname{Aut}(N)$ and (i) $\sigma^{m}(x)=c x c^{-1},(x \in N)(i i) \sigma(c)=c$.

Conversely, if $\sigma \in \operatorname{Aut}(N)$ and $c \in N$ satisfy (i) and (ii), then there exists one and only one extension group G of N such that $G / N=\langle u N\rangle$ is a cyclic group of order m and $\sigma(x)=v x v^{-1}(x \in N)$ and $v^{m}=c$.

Proof. For instance, see [9, III, § 7].
The structure of the group $N_{1}=N_{G}\left(C_{n}\right)$ was determined by $\operatorname{Iida}([2])$.

Theorem 0.1 (Iida [2]) Let G be a p-group which contains C_{n} as a normal subgroup of index p^{m}. Let $\phi \in$ $\operatorname{FIrr}\left(C_{n}\right)$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$. Then $m \leqq n-1$, and G $\cong G(n, m)$.

On the other hand, $N_{2}=N_{G}\left(N_{1}\right)$ and $N_{3}=N_{G}\left(N_{2}\right)$ were determined, when $\left[N_{1}: C_{n}\right]=p$ ([7]).

Theorem 0.2 ([7]) Let p be an odd prime. Let G be a p group which contains $C_{n}=\langle a\rangle$. We assume that $\left[G: C_{n}\right] \geq$ p^{3}. Define the subgroups of G by

$$
N_{1}=N_{G}\left(C_{n}\right) \text {, and } N_{i+1}=N_{G}\left(N_{i}\right) \text {, for } i=1,2 .
$$

Let $\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$, and $\left[N_{1}: C_{n}\right]$ $=p$. Then
(1) $N_{2} / N_{1} \cong C_{1}$ and $N_{2} \cong G(n, 1,1)$,
(2) $\quad N_{3} / N_{2} \cong C_{1}$ and $N_{3} \cong G(n, 1,1,1)$.

Remark 1. Conversely, it is easy to see that the groups $G(n, 1,1)$ and $G(n, 1,1,1)$ satisfy the condition ($E X, C$), which is defined in section 3 of this paper. Hence these groups satisfy the conditions of Problem 1.

Remark 2. By results of Iida ([2], see Theorem 0.1. in
this paper), we can see that $N_{1} \cong G(n, 1)$.
Our main theorem is the following:
Theorem. Let p be an odd prime. Let G be a p-group which contains $C_{n}=\langle a\rangle$. Define the subgroups of G by

$$
N_{1}=N_{G}\left(C_{n}\right), \text { and } N_{2}=N_{G}\left(N_{1}\right) .
$$

Let $\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$, and $\left[N_{1}: C_{n}\right]$ $=p^{m}, 4 m \leqq n$. Then
$N_{2} / N_{1} \cong C_{t}$ where $t \leqq m$.

3. Some preleminary results

In this section, we state some results concerning the criterion of the irreducibilities of induced characters and others, which we need in section 4.
We denote by $\zeta=\zeta_{p^{n}}$ a primitive p^{n} th root of unity. It is known that, for $C_{n}=\langle\mathrm{a}\rangle$, there are p^{n} irreducible characters $\phi_{v}\left(1 \leqq \nu \leqq p^{n}\right)$ of C_{n} :

$$
\phi_{v}\left(a^{i}\right)=\zeta^{v i}, \quad\left(1 \leqq i \leqq p^{n}\right)
$$

The irreducible character ϕ_{v} is faithful if and only if (v, p) $=1$.
It is well-known that

$$
\text { Aut }\langle\boldsymbol{a}\rangle \cong\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*} \cong C_{*} \times C_{n-1}
$$

where $\left(\mathbf{Z} / p^{n} \mathbf{Z}\right)^{*}$ is the unit group of the factor $\operatorname{ring} \mathbf{Z} / p^{n} \mathbf{Z}$ and C_{*} is the cyclic group of order $p-1$. Further, C_{n-1} is generated by the element $1+p$ in $\mathbf{Z} / p^{n} \mathbf{Z}$.
First, we state the following result of Shoda (cf [1, p. 329]):

Proposition 2. Let G be a group and H be a subgroup of G. Let ϕ be a linear character of H. Then the induced character ϕ^{G} of G is irreducible if and only if, for each $x \in$ $G-H=\{g \in G \mid g \notin H\}$, there exists $h \in x H x^{-1} \cap H$ such that $\phi(h) \neq \phi\left(x h x^{-1}\right)$. (Note that, when ϕ is faithful, the condition $\phi(h) \neq \phi\left(x h x^{-1}\right)$ holds if and only if $\left.h \neq x h x^{-1}\right)$.

Using this result, we have the following:
Proposition 3. Let $\langle a\rangle=C_{n} \subset G$, and ϕ be a faithful irreducible character of C_{n}. Then the following conditions are equivalent:
(1) ϕ^{G} is irreducible,
(2) For each $x \in G-C_{n}$, there exists $y \in\langle a\rangle \cap x\langle a\rangle x^{-1}$ such that $x y x^{-1} \neq y$.

Definition. When the condition (2) of Proposition 3 holds, we say that G satisfies (EX, C).

Let H be a group. For a normal subgroup N of H, and any $g, h \in H$, we write

$$
g \equiv h(\bmod N)
$$

when $g^{-1} h \in N$. For an element $g \in H$, we denote by $|g|$ the order of g.

4. Proof of Theorem

Let $\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Since $\phi^{G}=\left(\phi^{N_{1}}\right)^{G} \in \operatorname{Irr}(G)$, we must
have $\phi^{N_{1}} \in \operatorname{Irr}\left(N_{1}\right)$. Therefore, by Theorem 0.1 , we can take an element $b \in N_{1}-C_{n}=\left\{g \in N_{1} \mid g \notin C_{n}\right\}$ such that

$$
N_{1}=\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=1, \quad b a b^{-1}=a^{1+p^{n-m}}\right\rangle \cong G(n, m) .
$$ for some $m \in \mathbf{N}$.

Note that any element in $N_{1}=\langle\mathrm{a}, \mathrm{b}\rangle$ is represented as $a^{i} b^{j}$ for some $i, j \in \mathbf{Z}, 0 \leqq i \leqq p^{n}-1,0 \leqq j \leqq p^{m}-1$.

To prove the theorem, we need the following:
Lemma 1. Let p be an odd prime and n, m, k, j be integers satisfying $0 \leqq m \leqq n-1$. Then, if we put $s=1+k p^{n-m}$, we have the following equality:

$$
\frac{s^{j p^{m}}-1}{s^{j}-1} \equiv p^{m} \quad\left(\bmod p^{n}\right) .
$$

Proof of Lemma 1. We can show this by direct calculations.

Lemma 2 For any integers i, j, the following equalities hold.
(i) $a b \equiv b a\left(\bmod \left\langle a^{p^{n-m}}\right\rangle\right)$.
(ii) $b a^{p^{\prime \prime}} b^{-1}=a^{p^{m}}$.
(iii) $\quad\left(a^{i} b^{j}\right)^{p^{m}}=a^{i p^{m}}$.

Proof of Lemma 2. (i), and (ii) can be shown by direct calculations.

$$
\text { (iii). If we put } S=1+p^{n-m} \text {, we have }
$$

$\left(a^{i} u^{j}\right)^{p^{m}}=a^{i\left(s^{m m_{j}}-1 / s^{i}-1\right)} u^{p^{m j}}=a^{p^{m i}}$,
by direct calculations and Lemma 1.
Let $f: N_{2} \rightarrow N_{2} / N_{1}$ be a natural epimorphism of groups. For $u \in N_{2}$, we write $o(u)$ for the order of $f(u)$ in N_{2} / N_{1}. We can show the following:

Claim I. If $u \in N_{2}$, then $o(u) \leqq p^{m}$.
Proof of Claim I. Take an element $x \in N_{2}$. and write $o(x)$ $=p^{t}$. We will show that $t \leqq m$.
Write $x a x^{-1}=a^{i_{0}} b^{j_{0}}$ and $x b x^{-1}=a^{d_{0}} b^{t_{0}}$. Since $x a^{p^{m}} x^{-1}=a^{p^{m_{i}}}$,
by Lemma 2 (iii), we must have (p, i_{0}) $=1$.
On the other hand, since

$$
1=x b^{p^{m}} x^{-1}=a^{d_{0} p^{m}},
$$

we have

$$
d_{0} \equiv 0 \quad\left(\bmod p^{n-m}\right) .
$$

Therefore, we may write $d_{0}=p^{n-m} d$ and $x b x^{-1}=a^{p-m} b^{b_{0}}$,
for some $d \in \mathbf{Z}$. Since $n-m \geq m$, by our assumption, we have

$$
\begin{equation*}
x a^{p^{n-m}} x^{-1}=a^{p^{n-m i_{0}}} . \tag{1}
\end{equation*}
$$

Taking the conjugate of both sides of the equality, $b a b^{-1}$ $=a^{1+p^{n-m}}$ by x, we get

$$
\left(a^{p^{n-m} d} b^{t_{0}}\right)\left(a^{i_{0}} b^{j_{0}}\right)\left(a^{p^{n-m} d} b^{t_{0}}\right)^{-1}=a^{i_{0}} b^{j_{0}} a^{p^{n-m_{0}}} .
$$

Hence, we have

$$
a^{i_{0}\left(1+p^{n-m}\right)_{0} t_{0}} b_{0}^{j_{0}}=a^{i_{0}\left(1+p^{n-m)}\right.} b^{j_{0}} .
$$

Therefore,

$$
i_{0}\left(1+t_{0} \cdot p^{n-m}\right) \equiv i_{0}\left(1+p^{n-m}\right) \quad\left(\bmod p^{n}\right) .
$$

But $\left(i_{0}, p\right)=1$, so we get $t_{0} \equiv 1\left(\bmod p^{m}\right)$, and hence $x b x^{-1}=a^{p^{n-m} d} d$.

Note that $\left\langle a^{p^{n-m}}\right\rangle$ is a normal subgroup of N_{2}, by (1).
It is easy to see that

$$
x b x^{-1} \equiv b \quad\left(\bmod \left\langle a^{\left.p^{n-m}\right\rangle}\right\rangle .\right.
$$

$$
b a \equiv a b \quad\left(\bmod \left\langle a^{p^{n-m}}\right\rangle\right) .
$$

Further, we have

$$
\left.x a^{l} x^{-1}=\left(a^{i^{i}} b^{j_{0}}\right)^{l} \equiv a^{i_{0} l} b^{j_{0} l} \quad\left(\bmod a^{p^{n-m}}\right\rangle\right) .
$$

for any $l \in \mathbf{N}$.
Using these relations repeatedly, we get

$$
x^{s} a x^{-s} \equiv a^{i_{0}} b^{j_{0}\left(i_{0}^{-1}+\cdot+i_{0}+1\right)} \quad\left(\bmod \left\langle a^{p^{n-m}}\right\rangle\right),
$$

for any $s \in \mathbf{N}$.
In particular,

$$
x^{p^{\prime}} a x^{-p^{\prime}} \equiv a^{i_{0}^{t}} b^{j_{0}\left(i_{0}^{t^{\prime}-1}+\cdot+i_{0}+1\right)} \quad\left(\bmod \left\langle a^{p^{n-m}}\right\rangle\right)
$$

Hence we may write as

$$
x^{p^{\prime}} a x^{-p^{\prime}}=a^{i_{0}^{\prime \prime}+r p^{n-m}} b^{j_{0}\left(i_{0}^{p^{\prime \prime}-1}++i_{0}+1\right)}
$$

for some integer r.
Since $x^{p^{p}} \in N_{1}=\langle a, b\rangle$, we must have

$$
\begin{equation*}
i_{0}^{p^{t}} \equiv 1 \quad\left(\bmod p^{n-m}\right), \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{0}\left(i_{0}^{p^{\prime}-1}+\cdot+i_{0}+1\right) \equiv 0 \quad\left(\bmod p^{m}\right) . \tag{4}
\end{equation*}
$$

By (2), we can write as $i_{0}=1+k_{0} p^{s}$, for some integers k_{0} and $s, 1 \leqq s$. So,

$$
j_{0}\left(i_{0}^{p^{\prime}-1}+\cdot+i_{0}+1\right)=j_{0}\left(\frac{i_{0}^{p^{\prime}}-1}{i_{0}-1}\right)=j_{0} p^{t} l
$$

for some integer $l,(p, l)=1$.
Suppose that $t \geqq m+1$, then

$$
j_{0}\left(i_{0}^{p^{p-1-1}}+\cdot+i_{0}+1\right) \equiv 0 \quad\left(\bmod p^{m}\right)
$$

so, we have $x^{p^{p-1}} \in N_{1}$, which contradicts our hypothesis that $o(x)=p^{t}$. Thus the proof of Claim I is completed.

Take an element $x \in N_{2}$. Let $o(x)=p^{t}, 0 \leqq t \leqq m$, and write $x a x^{-1}=a^{i_{0}} b^{j_{0}}$. We have shown, in the proof of Claim I, that

$$
i_{0}^{p^{\prime}} \equiv 1 \quad\left(\mathrm{md} p^{n-m}\right)
$$

and

$$
j_{0} p^{t} \equiv 0 \quad\left(\bmod p^{m}\right)
$$

So, we can write as $i_{0}=1+k p^{n-m-t}$, and $j_{0}=j p^{m-t}$ for some integers k and $j,(p, j)=1$.
Summarizing the results we can write as

$$
\begin{align*}
& x a x^{-1}=a^{1+k p^{n-m-1}} b^{p^{m-1}}, \\
& x b x^{-1}=a^{p^{n-m}} b, \tag{5}
\end{align*}
$$

for some $k, j, d \in \mathbf{Z}$.
Define $t_{0}=\max \left\{o(x) \mid x \in N_{2}\right\}$, and take an element $x_{0} \in$ N_{2} such that $o\left(x_{0}\right)=p^{t_{0}}$.
Denote by N_{1}^{0} the subgroup of G generated by x_{0} and the elements of N_{1}. Then

$$
\left[N_{1}^{0}: N_{1}\right]=p^{t_{0}} \text { and } N_{1}^{0} / N_{1} \cong C_{t_{0}} .
$$

We will show that
Claim II. $\quad N_{1}^{0}=N_{2}$.
Proof of Claim II. Suppose that $N_{1}^{0} \varsubsetneqq N_{2}$. Take an element $w \in N_{2}-N_{1}^{0}=\left\{g \in N_{2} \mid g \notin N_{1}^{0}\right\}$. Suppose that $o(y)=$ p^{s}, then, by the hypothesis, we have $s \leqq t_{0}$. By the same way as in the proof of (5), we can write as

$$
\begin{aligned}
& y_{l} y^{-1}=a^{1+k_{1} p^{n-m-s}} b^{p^{m-s_{i}}}, \\
& y b y^{-1}=a^{p^{n-m} d_{1}} b,
\end{aligned}
$$

for some $k_{1}, j_{1}, d_{1} \in \mathbf{Z},\left(p, j_{1}\right)=1$.
On the other hand, we can take the element $u \in\left\langle x_{0}^{p_{0}-s}\right\rangle$, such that

$$
\begin{aligned}
& u^{-1} a u=a^{1+k_{2} p^{p-m-s}} b^{p m-s}\left(p^{s-j_{1}}\right) \\
& u^{-1} b u=a^{p^{n-m} d_{2}} b,
\end{aligned}
$$

for some $k_{2}, d_{2} \in \mathbf{Z}$.
We then have
u^{-1} yay $^{-1} u=a^{1+k_{3} p^{n-m-s}}$,
for some $k_{3} \in \mathbf{Z}$.
This means that $u^{-1} y \in N_{1}$. So, we have $y \in N_{1}^{0}$, which contradicts our hypothesis. Thus the proof of Claim II is completed.

By Claim II, we have $N_{2} / N_{1}=N_{1}^{0} / N_{1} \cong C_{t_{0}}, t_{0} \leqq m$. So the proof of the theorem is completed.

References

[1] C. Curtis and I. Reiner: "Representation theory of finite
groups and associative algebras', Interscience, New York, 1962.
[2] Y. Iida: The p-groups with an irreducible character induced from a faithful linear character, Preprint.
[3] Y. Iida and T. Yamada: Extensions and induced characters of quaternion, dihedral and semidihedral groups, SUT J. Math. 27 (1991), 237-262.
[4] Y. Iida and T. Yamada: Types of faithful metacyclic 2groups, SUT J. Math. 28 (1992), 23-46.
[5] K. Sekiguchi: Extensions of some 2-groups which preserve the irreducibilities of induced characters, Osaka J. Math. 37 (2000).
[6] K. Sekiguchi: Irreducibilities of the induced characters of cyclic p-groups, Math. J. of Okayama Univ. 41 (1999).
[7] K. Sekiguchi: Extensions and the irreducibilities of the induced characters of cyclic p-groups, Hiroshima Math. J. 32 (2002).
[8] K. Sekiguchi: Extensions and the irreducibilities of induced characters of some 2-groups, Hokkaido Math. J. 31 (2002).
[9] H. Zassenhaus: "The theory of groups", Chelsea, New York, 1949.

[^0]: * Department of Civil Engineering, Faculty of Engineering

