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Irreducibilities of the induced
characters of some p-groups

Katsusuke SEKIGUCHI

Abstract: Let ¢ be a faithful irreducible character of the cyclic group C, of order p”, where p is an odd prime.
We study the p-group G containing C, such that the induced character ¢ is also irreducible. The purpose of this
paper is to consider the subgroup Ng(Ng(C,)). We will determine the factor group Ng(Ng(C,))/Ng(C,).
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1. Introduction

Let G be a finite group. We denote by Irr(G) the set of
complex irreducible characters of G and by FIrr(G) (C
Irr(G)) the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we
denote by C, the cyclic group of order p”. A finite group G
is called an M-group, if every ¢ € Irr(G) is induced from a
linear character of a subgroup of G.

It is well-known that every nilpotent group is an M-
group. Hence, when G is a p-group, for any y €Irr(G),
there exists a subgroup H of G and a linear character ¢ of
H such that ¢¢ = x. If we set N=Ker ¢, then N<IH and ¢ is
a faithful irreducible character of H/N=C,, for some
non-negative integer n. In this paper, we will consider the
case when N=1, that is, ¢ is a faithful linear character of
H=C,.

We consider the following:

Problem 1. Let p be an odd prime, and ¢ be a faithful
irreducible character of C,. Determine the p-group G such
that C,C G and the induced character ¢S is also irreduci-
ble.

Since all the faithful irreducible characters of C, are al-
gebraically conjugate to each other, the irreducibility of
¢S (¢ €EFIrr(C,)) is independent of the choice of ¢, and
depends only on n.

This problem has been solved in each of the following
cases:

(1) C,<G (12D,

(2) G has a subgroup H containing C, such that C,<\H

and [G : H]=p ([6]).

() [G:Hl=p* (7).

On the other hand, when p=2, Yamada and lida [4]
proved the following interesting result:

Let Q denote the rational field. Let G be a 2-group and x
a complex irreducible character of G. Then there exist sub-
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groups H >N in G and a complex irreducible character ¢
of H such that y =¢% Q(x)=Q(¢), N=Ker ¢ and

H/N=Q,(n=2), or D,(n>2),
or SD,(n=>3), or C,(n=0).

Here, Q,, D, and SD,, denote the generalized quaternion
group, the dihedral group of order 2"*! (n>2) and the
semidihedral group of order 27! (n>3), respectively, and

Q) =Q(x(®), g€ 06).
They considered the following:

Problem 2. Let ¢ be a faithful irreducible character of
H, where H=Q,, or D, or SD,. Determine the 2-group G
such that HC G and the induced character ¢© is also ir-
reducible.

Yamada and Iida [3] solved this problem in the case
when [G; H] =2 or 4 and we have recently solved Problem
2 completely ([8]). In [8], we showed that

G=Ng(H) or No(No(H)),

for all H=Q, or D, or SD,, if G satisfies the conditions of
Problem 2. Here, as usual, Ng(H) and Ng(Ng(H)) are the
normalizers of H and Ng(H) in G, respectively. This
means that, if we define subgroups of G by
M,=Ngz(H), and M;, = Ngz(M;), fori>1,
then
HEM EM,=M;=M,=--=G,
for all H=Q, or D, or SD,. Concerning Problem 2, see
also [5].
In this paper, we consider Problem 1. We also define
subgroups of G by
N;=Ng(C,), and N;,; = Ns(N)), for i>1.
The purpose of this paper is to consider the group N, =Ng
(Ng(Cp)). We will determine the structure of the group
N,/Njy.
Throughout this paper, Z and N denote the set of ra-
tional integers and the natural numbers, respectively.
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2. Statements of the results

For the rest of this paper, we assume that p is an odd
prime.
First, we introduce the following groups:
(i) G(n, m)y=<a, b,,> with
a”'=b%'=1, byab,,'=a"*"""", (m=n-—1).
(ii) G(n,m, 1)=<a, b,,, v)(>G@n, m)=<a, b,,>) with
a”=bb'=1,b,ab,' =a""""",
vav t=a """ oo
v"=b,, vb,v '=b,, 2m=n-—1).
@) G(n, 1,1, 1)=<a, by, v, x>)(>G(n, 1, 1)
={a, by, v)) with
a”=b"=1, biab;'=a'"""", vav ' =a""""by,
w=b,, vbjv '=b,, xax '=a"""" v, x"=v,
xvox '=v,xbix '=b, (7=n).
We can see that G(n, m, 1) (resp. G(n, 1, 1, 1)) is an exten-
sion group of G(n, m) (resp. G(n, 1, 1)) by using Proposi-
tion 1 below:

Proposition 1. Let N be a finite group such that G[>N
and G/N=<{uN) is a cyclic group of order m. Then u"=c
EN. If we put a(x)=uxu~!, xEN, then g € Aut(N) and
@) a"(x)=cxc™!, (xEN) (i) a(c)=c.

Conversely, if 6 € Aut(N) and c € N satisfy (i) and (ii),
then there exists one and only one extension group G of N
such that G/N=<{uN) is a cyclic group of order m and
ag(x)=vxv 1 (x€N) and v"=c.

Proof. For instance, see [9, III, § 7].

The structure of the group N, = Ng(C,) was determined
by Iida([2]).

Theorem 0.1 (Iida [2]) Let G be a p-group which con-
tains C, as a normal subgroup of index p™. Let ¢ €
Flrr(C,). Suppose that ¢° €Irr(G). Then m=n—1, and G
=G(n, m).

On the other hand, N,=Ng(N;) and N;= Ng(N,) were
determined, when [N, : C,]=p ([7]).

Theorem 0.2 ([7]) Let p be an odd prime. Let G be a p-
group which contains C,=<{ay. We assume that [G : C,]>
Dp3. Define the subgroups of G by
N,=Nx(C),), and N;, ;= Ng(Ny), fori=1, 2.

Let ¢ €FIrr(C,). Suppose that ¢° €1Irr(G), and [N, : C,]
=p. Then

(1) No/N,=C,and N,=G(n, 1, 1),

2) N3/N,=C,and N;=G(n, 1,1, 1).

REMARK 1. Conversely, it is easy to see that the groups
G(n, 1, 1) and G(n, 1, 1, 1) satisfy the condition (EX, C),
which is defined in section 3 of this paper. Hence these
groups satisfy the conditions of Problem 1.

REMARK 2. By results of Iida ([2], see Theorem 0.1. in

this paper), we can see that N, =G(n, 1).
Our main theorem is the following:

Theorem. Let p be an odd prime. Let G be a p-group
which contains C,=<ay. Define the subgroups of G by
N;=Ng(C,), and N, = Ng(IV;).
Let ¢ €FIrr(C,). Suppose that ¢° €1rr(G), and [N, : C,]
=p™, dm=n. Then
N,/N,=C,where t=m.

3. Some preleminary results

In this section, we state some results concerning the
criterion of the irreducibilities of induced characters and
others, which we need in section 4.

We denote by {={,» a primitive p"th root of unity. It is
known that, for C,=<{a), there are p” irreducible charac-
ters ¢, (1=v=p") of C,:

$y(@)={", (1=i=p").
The irreducible character ¢, is faithful if and only if (v, p)
=1.
It is well-known that

Aut{a>=(Z/p"2)*=Cy X C,_,

where (Z/p"Z)* is the unit group of the factor ring Z/p"Z
and Cy is the cyclic group of order p—1. Further, C,_, is
generated by the element 1+ p in Z/p"Z.

First, we state the following result of Shoda (cf [1, p.
329)):

Proposition 2. Let G be a group and H be a subgroup
of G. Let ¢ be a linear character of H. Then the induced
character ¢S of G is irreducible if and only if, for each x €
G-H={9g€Glg¢H}, there exists hexHx 'NH such
that ¢(h)# d(xhx=1). (Note that, when ¢ is faithful, the
condition ¢p(h)# ¢(xhx=1) holds if and only if h#xhx~1).

Using this result, we have the following:

Proposition 3. Let<{a)=C,CG, and ¢ be a faithful ir-
reducible character of C,. Then the following conditions
are equivalent:

(1) ¢C is irreducible,

(2) For each x€ G— C,, there exists y<<{a) Nx{ayx~!
such that xyx=1+#y.

DEFINITION. When the condition (2) of Proposition 3
holds, we say that G satisfies (EX, C).

Let H be a group. For a normal subgroup N of H, and
any g, h€ H, we write
g=h (mod N),
when g~!h€N. For an element g < H, we denote by |g|
the order of g.

4. Proof of Theorem

Let ¢ €FIrr(C,). Since ¢CG=(¢")CG<Irr(G), we must
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have ¢™Irr(N;). Therefore, by Theorem 0.1, we can
take an element b N, —C,={gE€N,|g& C,} such that

N,={a, bla?"=b""=1, bab '=a'"""")>=Gn, m).
for some mEN.

Note that any element in N;=<a, b) is represented as
a'ty for some i, j€EZ, 0=i=p"—1,0=j=p"—1.

To prove the theorem, we need the following:

Lemma 1. Let p be an odd prime and n, m, k, j be in-
tegers satisfying 0=m=n—1. Then, if we put
s=1+kp"—™, we have the following equality:

s —1
s/—1

m

=p" (mod p").

Proof of Lemma 1.
tions.

We can show this by direct calcula-

Lemma 2 Forany integers i, j, the following equalities
hold.

(i) ab=ba (mod<a”" ™).

(ii) ba"b '=a"".

(i) (a'byY"=a"".

Proof of Lemma 2.
calculations.
(iii). If we put s=1+p"~ ™, we have
(aiuj)p'” — ai(sl"”lf 1/si— l)up'”j — ap”’i,

by direct calculations and Lemma 1.

(i), and (ii) can be shown by direct

Let f: N, —~> N,/N, be a natural epimorphism of
groups. For u € N,, we write o(u) for the order of f(u) in
N,/N;. We can show the following:

Claim I. If u€N,, then o(u)=p™.

Proof of Claim I. Take an element x € N,. and write o(x)
=p'. We will show that t=m.

Write xax~!=a"b" and xbx~!=a%b". Since

xa?"x '=qP",
by Lemma 2 (iii), we must have (p, iy)=1.
On the other hand, since
1=xb?"x '=qg%r",
we have
dy=0 (modp"™ ™).
Therefore, we may write dy=p" "d and
xbx " '=qP" "ph,
for some dE€Z. Since n—m>m, by our assumption, we
have
xa? "x =g ", 6))
Taking the conjugate of both sides of the equality, bab~!
=a'""" " by x, we get
(@ ") (a b?)(a?" "Ib") " = ahblgP" ",
Hence, we have
g +p"’”’)’“bjn =gt Mo,
Therefore,
1+t p" ")=i(1+p" ™) (mod p").

But (iy, p)=1, so we get {,=1 (mod p™), and hence
xbx '=qa?" "p. ?)

Note that <¢”"™") is a normal subgroup of N,, by (1).
It is easy to see that
xbx '=b (mod<a”" ")).
ba=ab (mod {a”"")).
Further, we have
xa'x '=(a"b")=a"b" (moda”")).
for any /EN.
Using these relations repeatedly, we get
xSax S =@hph@ D (mod (" ")),
for any sEN.
In particular,
xPax P'= gt pit ) mod (gP" ).
Hence we may write as
xPax P'= gt e s i)
for some integer r.
Since x*' € N, =<a, b), we must have
=1 (modp" ™), 3)
and
Jo@ '+ - +ip+1)=0 (mod p™). 4)
By (2), we can write as iy=1+ kyp®, for some integers k,
and s, 1 =s. So,
ppt_
T o+ D= (’I."
0
for some integer /, (p, [)=1.
Suppose that f=Zm + 1, then
Joi8 T 4+ - +ip+1)=0 (mod p™),
so, we have x” '€ N, which contradicts our hypothesis
that o(x)=p’. Thus the proof of Claim I is completed.

1 t
=jo0'l,
_1> JoP

Take an element x€N,. Let o(x)=p/, 0=¢t=m, and
write xax ! =a"b”. We have shown, in the proof of Claim
I, that

ir=1
and
Jop'=0 (mod p™),

So, we can write as iy=1+kp* "~ and j,=jp" ! for
some integers k and j, (p, j)=1.

Summarizing the results we can write as

xax ‘=q' Tk prm
xbx " '=a?" ", ®)
for some k, j, dEZ.

Define t,=max{o(x)|xEN,}, and take an element x, €
N, such that o(x,)=p".

Denote by N9 the subgroup of G generated by x, and the
elements of N;. Then

[N : Ny]=p"and NY/N,=C,,.
We will show that

(md p"~"),

Claim II. N{=N,.

Proof of Claim II. Suppose that NY&N,. Take an ele-
ment weN,—N={gEN,|g&N?}. Suppose that o(y)=
p*, then, by the hypothesis, we have s=¢,. By the same
way as in the proof of (5), we can write as
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yay—l =al+k|p"’””’bp”’”j|’
yby~'=a"""b,
for some ki, j,, d\€Z, (p, ji)=1.
On the other hand, we can take the element u € {x5" %>,
such that
ulau=a' +kzp"’m’*bpm”(p**j.)’
u 'bu=a” "%b,
for some k,, d, EZ.
We then have
u 'yay 'u=a
for some k;E€Z.
This means that u~'y€N;. So, we have y€NY, which
contradicts our hypothesis. Thus the proof of Claim II is
completed.

1+ kypn—m=s
s

By Claim II, we have N2/N1=N?/NIEC,U, ty=m. So
the proof of the theorem is completed.
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