Irreducibilities of the induced characters of some *p*-groups

Katsusuke SEKIGUCHI

Abstract: Let ϕ be a faithful irreducible character of the cyclic group C_n of order p^n , where p is an odd prime. We study the p-group G containing C_n such that the induced character ϕ^G is also irreducible. The purpose of this paper is to consider the subgroup $N_G(N_G(C_n))$. We will determine the factor group $N_G(N_G(C_n))/N_G(C_n)$.

Keywords: p-group, Extension, Irreducible induced character, Faithful irreducible character

1. Introduction

Let G be a finite group. We denote by Irr(G) the set of complex irreducible characters of G and by FIrr(G) (\subset Irr(G)) the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we denote by C_n the cyclic group of order p^n . A finite group G is called an M-group, if every $\phi \in \operatorname{Irr}(G)$ is induced from a linear character of a subgroup of G.

It is well-known that every nilpotent group is an Mgroup. Hence, when G is a p-group, for any $\chi \in \operatorname{Irr}(G)$, there exists a subgroup H of G and a linear character ϕ of H such that $\phi^G = \chi$. If we set $N = \operatorname{Ker} \phi$, then $N \triangleleft H$ and ϕ is a faithful irreducible character of $H/N \cong C_n$, for some non-negative integer n. In this paper, we will consider the case when N = 1, that is, ϕ is a faithful linear character of $H \cong C_n$.

We consider the following:

Problem 1. Let p be an odd prime, and ϕ be a faithful irreducible character of C_n . Determine the p-group G such that $C_n \subset G$ and the induced character ϕ^G is also irreducible.

Since all the faithful irreducible characters of C_n are algebraically conjugate to each other, the irreducibility of ϕ^G ($\phi \in FIrr(C_n)$) is independent of the choice of ϕ , and depends only on n.

This problem has been solved in each of the following cases:

- (1) $C_n \triangleleft G$ ([2]),
- (2) G has a subgroup H containing C_n such that $C_n \triangleleft H$ and [G:H] = p ([6]).
- (3) $[G:H] = p^3([7]).$

On the other hand, when p=2, Yamada and Iida [4] proved the following interesting result:

Let **Q** denote the rational field. Let *G* be a 2-group and χ a complex irreducible character of *G*. Then there exist sub-

groups $H \triangleright N$ in G and a complex irreducible character ϕ of H such that $\chi = \phi^G$, $\mathbf{Q}(\chi) = \mathbf{Q}(\phi)$, $N = \text{Ker } \phi$ and

 $H/N \cong Q_n(n \ge 2)$, or $D_n(n \ge 2)$, or $SD_n(n \ge 3)$, or $C_n(n \ge 0)$.

Here, Q_n , D_n and SD_n denote the generalized quaternion group, the dihedral group of order 2^{n+1} ($n \ge 2$) and the semidihedral group of order 2^{n+1} ($n \ge 3$), respectively, and $\mathbf{Q}(\chi) = \mathbf{Q}(\chi(g), g \in G)$.

They considered the following:

Problem 2. Let ϕ be a faithful irreducible character of H, where $H = Q_n$ or D_n or SD_n . Determine the 2-group G such that $H \subseteq G$ and the induced character ϕ^G is also irreducible.

Yamada and Iida [3] solved this problem in the case when [G; H] = 2 or 4 and we have recently solved Problem 2 completely ([8]). In [8], we showed that

$$G = N_G(H)$$
 or $N_G(N_G(H))$,

for all $H = Q_n$ or D_n or SD_n , if G satisfies the conditions of Problem 2. Here, as usual, $N_G(H)$ and $N_G(N_G(H))$ are the normalizers of H and $N_G(H)$ in G, respectively. This means that, if we define subgroups of G by

 $M_1 = N_G(H)$, and $M_{i+1} = N_G(M_i)$, for $i \ge 1$,

then

 $H \subseteq M_1 \subseteq M_2 = M_3 = M_4 = \dots = G$, for all $H = Q_n$ or D_n or SD_n . Concerning Problem 2, see also [5].

In this paper, we consider Problem 1. We also define subgroups of G by

 $N_1 = N_G(C_n)$, and $N_{i+1} = N_G(N_i)$, for $i \ge 1$.

The purpose of this paper is to consider the group $N_2 = N_G$ ($N_G(C_n)$). We will determine the structure of the group N_2/N_1 .

Throughout this paper, Z and N denote the set of rational integers and the natural numbers, respectively.

^{*} Department of Civil Engineering, Faculty of Engineering

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime.

First, we introduce the following groups:

(i) $G(n, m) = \langle a, b_m \rangle$ with $a^{p^n} = b_m^{p^m} = 1, b_m a b_m^{-1} = a^{1+p^{n-m}}, \quad (m \le n-1).$ (ii) $G(n, m, 1) = \langle a, b_m, v \rangle (\triangleright G(n, m) = \langle a, b_m \rangle)$ with $a^{p^n} = b_m^{p^m} = 1, b_m a b_m^{-1} = a^{1+p^{n-m}},$ $vav^{-1} = a^{1+p^{n-m-1}} b_m^{p^{m-1}},$ $v^p = b_m, v b_m v^{-1} = b_m \quad (2m \le n-1).$ (iii) $G(n, 1, 1, 1) = \langle a, b_1, v, x \rangle (\triangleright G(n, 1, 1))$

 $= \langle a, b_{1}, v \rangle \text{ with } \\ a^{p^{n}} = b_{1}^{p} = 1, \ b_{1}ab_{1}^{-1} = a^{1+p^{n-1}}, \ vav^{-1} = a^{1+p^{n-2}}b_{1}, \\ v^{p} = b_{1}, \ vb_{1}v^{-1} = b_{1}, \ xax^{-1} = a^{1+p^{n-3}}v, \ x^{p} = v, \\ xvx^{-1} = v, \ xb_{1}x^{-1} = b_{1} \quad (7 \le n). \end{cases}$

We can see that G(n, m, 1) (resp. G(n, 1, 1, 1)) is an extension group of G(n, m) (resp. G(n, 1, 1)) by using Proposition 1 below:

Proposition 1. Let N be a finite group such that $G \triangleright N$ and $G/N = \langle uN \rangle$ is a cyclic group of order m. Then $u^m = c \in N$. If we put $\sigma(x) = uxu^{-1}$, $x \in N$, then $\sigma \in Aut(N)$ and (i) $\sigma^m(x) = cxc^{-1}$, $(x \in N)$ (ii) $\sigma(c) = c$.

Conversely, if $\sigma \in Aut(N)$ and $c \in N$ satisfy (i) and (ii), then there exists one and only one extension group G of N such that $G/N = \langle uN \rangle$ is a cyclic group of order m and $\sigma(x) = vxv^{-1}$ ($x \in N$) and $v^m = c$.

Proof. For instance, see [9, III, §7].

The structure of the group $N_1 = N_G(C_n)$ was determined by Iida([2]).

Theorem 0.1 (Iida [2]) Let G be a p-group which contains C_n as a normal subgroup of index p^m . Let $\phi \in$ FIrr(C_n). Suppose that $\phi^G \in$ Irr(G). Then $m \leq n-1$, and $G \cong G(n, m)$.

On the other hand, $N_2 = N_G(N_1)$ and $N_3 = N_G(N_2)$ were determined, when $[N_1 : C_n] = p$ ([7]).

Theorem 0.2 ([7]) Let p be an odd prime. Let G be a pgroup which contains $C_n = \langle a \rangle$. We assume that $[G : C_n] \ge p^3$. Define the subgroups of G by

 $N_1 = N_G(C_n)$, and $N_{i+1} = N_G(N_i)$, for i = 1, 2. Let $\phi \in \operatorname{FIrr}(C_n)$. Suppose that $\phi^G \in \operatorname{Irr}(G)$, and $[N_1 : C_n] = p$. Then

(1) $N_2/N_1 \cong C_1$ and $N_2 \cong G(n, 1, 1)$,

(2) $N_3/N_2 \cong C_1$ and $N_3 \cong G(n, 1, 1, 1)$.

REMARK 1. Conversely, it is easy to see that the groups G(n, 1, 1) and G(n, 1, 1, 1) satisfy the condition (EX, C), which is defined in section 3 of this paper. Hence these groups satisfy the conditions of Problem 1.

REMARK 2. By results of Iida ([2], see Theorem 0.1. in

this paper), we can see that $N_1 \cong G(n, 1)$.

Our main theorem is the following:

Theorem. Let p be an odd prime. Let G be a p-group which contains $C_n = \langle a \rangle$. Define the subgroups of G by

 $N_1 = N_G(C_n)$, and $N_2 = N_G(N_1)$.

Let $\phi \in \operatorname{FIrr}(C_n)$. Suppose that $\phi^G \in \operatorname{Irr}(G)$, and $[N_1 : C_n] = p^m$, $4m \leq n$. Then

 $N_2/N_1 \cong C_t$ where $t \le m$.

3. Some preleminary results

In this section, we state some results concerning the criterion of the irreducibilities of induced characters and others, which we need in section 4.

We denote by $\zeta = \zeta_{p^n}$ a primitive p^n th root of unity. It is known that, for $C_n = \langle a \rangle$, there are p^n irreducible characters ϕ_v $(1 \le v \le p^n)$ of C_n :

 $\phi_{\nu}(a^i) = \zeta^{\nu i}, \quad (1 \leq i \leq p^n).$

The irreducible character ϕ_v is faithful if and only if (v, p) = 1.

It is well-known that

Aut $\langle a \rangle \cong (\mathbb{Z}/p^n\mathbb{Z})^* \cong C_* \times C_{n-1}$

where $(\mathbb{Z}/p^n\mathbb{Z})^*$ is the unit group of the factor ring $\mathbb{Z}/p^n\mathbb{Z}$ and C_* is the cyclic group of order p-1. Further, C_{n-1} is generated by the element 1+p in $\mathbb{Z}/p^n\mathbb{Z}$.

First, we state the following result of Shoda (cf [1, p. 329]):

Proposition 2. Let G be a group and H be a subgroup of G. Let ϕ be a linear character of H. Then the induced character ϕ^G of G is irreducible if and only if, for each $x \in$ $G-H=\{g \in G | g \notin H\}$, there exists $h \in xHx^{-1} \cap H$ such that $\phi(h) \neq \phi(xhx^{-1})$. (Note that, when ϕ is faithful, the condition $\phi(h) \neq \phi(xhx^{-1})$ holds if and only if $h \neq xhx^{-1}$).

Using this result, we have the following:

Proposition 3. Let $\langle a \rangle = C_n \subset G$, and ϕ be a faithful irreducible character of C_n . Then the following conditions are equivalent:

(1) ϕ^G is irreducible,

(2) For each $x \in G - C_n$, there exists $y \in \langle a \rangle \cap x \langle a \rangle x^{-1}$ such that $xyx^{-1} \neq y$.

DEFINITION. When the condition (2) of Proposition 3 holds, we say that G satisfies (EX, C).

Let H be a group. For a normal subgroup N of H, and any g, $h \in H$, we write

 $g \equiv h \pmod{N}$,

when $g^{-1}h \in N$. For an element $g \in H$, we denote by |g| the order of g.

4. Proof of Theorem

Let $\phi \in \operatorname{FIrr}(C_n)$. Since $\phi^G = (\phi^{N_1})^G \in \operatorname{Irr}(G)$, we must

have $\phi^{N_1} \in \operatorname{Irr}(N_1)$. Therefore, by Theorem 0.1, we can take an element $b \in N_1 - C_n = \{g \in N_1 | g \notin C_n\}$ such that $N_1 = \langle a, b | a^{p^n} = b^{p^m} = 1, \quad bab^{-1} = a^{1+p^{n-m}} \rangle \cong G(n, m).$ for some $m \in \mathbb{N}$.

Note that any element in $N_1 = \langle a, b \rangle$ is represented as $a^i b^j$ for some $i, j \in \mathbb{Z}, 0 \le i \le p^n - 1, 0 \le j \le p^m - 1$.

To prove the theorem, we need the following:

Lemma 1. Let p be an odd prime and n, m, k, j be integers satisfying $0 \le m \le n-1$. Then, if we put $s=1+kp^{n-m}$, we have the following equality:

$$\frac{s^{jp^m}-1}{s^{j}-1} \equiv p^m \pmod{p^n}.$$

Proof of Lemma 1. We can show this by direct calculations.

Lemma 2 For any integers *i*, *j*, the following equalities hold.

- (i) $ab \equiv ba \pmod{\langle a^{p^{n-m}} \rangle}$.
- (ii) $ba^{p^m}b^{-1}=a^{p^m}$.

(iii) $(a^i b^j)^{p^m} = a^{ip^m}$.

Proof of Lemma 2. (i), and (ii) can be shown by direct calculations.

(iii). If we put $s = 1 + p^{n-m}$, we have $(a^i u^j)^{p^m} = a^{i(s^{p^{m_j}} - 1/s^j - 1)} u^{p^{m_j}} = a^{p^{m_i}}$,

by direct calculations and Lemma 1.

Let $f: N_2 \to N_2/N_1$ be a natural epimorphism of groups. For $u \in N_2$, we write o(u) for the order of f(u) in N_2/N_1 . We can show the following:

Claim I. If $u \in N_2$, then $o(u) \leq p^m$.

Proof of Claim I. Take an element $x \in N_2$. and write o(x) $= p^t$. We will show that $t \leq m$. Write $xax^{-1} = a^{i_0}b^{i_0}$ and $xbx^{-1} = a^{d_0}b^{t_0}$. Since $xa^{p^{m}}x^{-1}=a^{p^{m}i_{0}},$ by Lemma 2 (iii), we must have $(p, i_0) = 1$. On the other hand, since $1 = xb^{p^m}x^{-1} = a^{d_0p^m}$ we have $d_0\!\equiv\!0\pmod{p^{n-m}}.$ Therefore, we may write $d_0 = p^{n-m}d$ and $xbx^{-1} = a^{p^{n-m}d}b^{t_0}$ for some $d \in \mathbb{Z}$. Since $n - m \ge m$, by our assumption, we have $xa^{p^{n-m}}x^{-1}=a^{p^{n-m}i_0}.$ (1) Taking the conjugate of both sides of the equality, bab^{-1} $=a^{1+p^{n-m}}$ by x, we get $(a^{p^{n-m}d}b^{t_0})(a^{i_0}b^{j_0})(a^{p^{n-m}d}b^{t_0})^{-1} = a^{i_0}b^{j_0}a^{p^{n-m}i_0}.$ Hence, we have $a^{i_0(1+p^{n-m})t_0}b^{j_0} = a^{i_0(1+p^{n-m})}b^{j_0}.$ Therefore,

 $i_0(1+t_0\cdot p^{n-m})\equiv i_0(1+p^{n-m})\pmod{p^n}.$

But
$$(i_0, p) = 1$$
, so we get $t_0 \equiv 1 \pmod{p^m}$, and hence
 $xbx^{-1} = a^{p^{n-m}d}b.$ (2)

Note that $\langle a^{p^{n-m}} \rangle$ is a normal subgroup of N_2 , by (1). It is easy to see that $xbx^{-1} \equiv b \pmod{\langle a^{p^{n-m}} \rangle}$. $ba \equiv ab \pmod{\langle a^{p^{n-m}} \rangle}$. Further, we have $xa^{l}x^{-1} = (a^{i_0}b^{j_0})^{l} \equiv a^{i_0l}b^{j_0l} \pmod{a^{p^{n-m}}}$ for any $l \in \mathbf{N}$. Using these relations repeatedly, we get $x^{s}ax^{-s} \equiv a^{i_{0}^{s}}b^{j_{0}(i_{0}^{s-1}+\cdots+i_{0}+1)} \pmod{\langle a^{p^{n-m}} \rangle},$ for any $s \in \mathbf{N}$. In particular, $x^{p'}ax^{-p'} \equiv a^{i_0^{p'}}b^{j_0(i_0^{p'-1}+\cdots+i_0+1)} \pmod{\langle a^{p^{n-m}} \rangle}.$ Hence we may write as $x^{p'}ax^{-p'}=a^{i_0^{p'}+rp^{n-m}}b^{j_0(i_0^{p'-1}+\cdot+i_0+1)}.$ for some integer r. Since $x^{p'} \in N_1 = \langle a, b \rangle$, we must have $i_0^{p'} \equiv 1 \pmod{p^{n-m}},$ (3) and $j_0(i_0^{p^{i-1}}+\cdot+i_0+1)\equiv 0 \pmod{p^m}.$ (4)

By (2), we can write as $i_0 = 1 + k_0 p^s$, for some integers k_0 and $s, 1 \le s$. So,

$$j_0(i_0^{p'-1}+\cdot+i_0+1)=j_0\left(\frac{l_0'-1}{i_0-1}\right)=j_0p'l,$$

for some integer l, (p, l) = 1.

Suppose that $t \ge m+1$, then

 $j_0(i_0^{p^{t-1}-1}+\cdots+i_0+1)\equiv 0 \pmod{p^m}$, so, we have $x^{p^{t-1}} \in N_1$, which contradicts our hypothesis that $o(x) = p^t$. Thus the proof of Claim I is completed.

Take an element $x \in N_2$. Let $o(x) = p^t$, $0 \le t \le m$, and write $xax^{-1} = a^{i_0}b^{j_0}$. We have shown, in the proof of Claim I, that

$$t_0^{\nu} \equiv 1 \pmod{p^n - m}$$
,
and
 $j_0 p^t \equiv 0 \pmod{p^m}$,
So, we can write as $i_0 = 1 + kp^{n-m-t}$, and $j_0 = jp^{m-t}$ for
some integers k and j, $(p, j) = 1$.
Summarizing the results we can write as
 $xax^{-1} = a^{1+kp^{n-m-t}}b^{p^{m-t}j}$,
 $xbx^{-1} = a^{p^{n-m}d}b$, (5)
for some k, j, $d \in \mathbb{Z}$.
Define $t_0 = max\{o(x) | x \in N_2\}$, and take an element $x_0 \in N_2$ such that $o(x_0) = p^{t_0}$.
Denote by N_1^0 the subgroup of G generated by x_0 and the
elements of N_1 . Then

 $[N_1^0:N_1] = p^{t_0} \text{ and } N_1^0/N_1 \cong C_{t_0}.$

We will show that

Claim II. $N_1^0 = N_2$.

Proof of Claim II. Suppose that $N_1^0 \subsetneq N_2$. Take an element $w \in N_2 - N_1^0 = \{g \in N_2 | g \notin N_1^0\}$. Suppose that $o(y) = p^s$, then, by the hypothesis, we have $s \le t_0$. By the same way as in the proof of (5), we can write as

for some $k_1, j_1, d_1 \in \mathbb{Z}$, $(p, j_1) = 1$.

On the other hand, we can take the element $u \in \langle x_0^{p_0-s} \rangle$, such that

$$u^{-1}au = a^{1+k_2p^m - m} b^{p^m - 3(p^3 - J_1)},$$

$$u^{-1}bu = a^{p^{n-m}d_2}b,$$

for some $k_2, d_2 \in \mathbb{Z}.$

We then have

$$u^{-1}yay^{-1}u = a^{1+k_3p^{n-m-s}},$$

for some $k_3 \in \mathbb{Z}$.

This means that $u^{-1}y \in N_1$. So, we have $y \in N_1^0$, which contradicts our hypothesis. Thus the proof of Claim II is completed.

By Claim II, we have $N_2/N_1 = N_1^0/N_1 \cong C_{t_0}$, $t_0 \le m$. So the proof of the theorem is completed.

References

[1] C. Curtis and I. Reiner: "Representation theory of finite

groups and associative algebras'', Interscience, New York, 1962.

- [2] Y. Iida: *The p-groups with an irreducible character induced from a faithful linear character*, Preprint.
- [3] Y. Iida and T. Yamada: *Extensions and induced characters of quaternion, dihedral and semidihedral groups*, SUT J. Math. 27 (1991), 237–262.
- [4] Y. Iida and T. Yamada: Types of faithful metacyclic 2groups, SUT J. Math. 28 (1992), 23-46.
- [5] K. Sekiguchi: Extensions of some 2-groups which preserve the irreducibilities of induced characters, Osaka J. Math. 37 (2000).
- [6] K. Sekiguchi: Irreducibilities of the induced characters of cyclic p-groups, Math. J. of Okayama Univ. 41 (1999).
- [7] K. Sekiguchi: *Extensions and the irreducibilities of the induced characters of cyclic p-groups*, Hiroshima Math. J. 32 (2002).
- [8] K. Sekiguchi: Extensions and the irreducibilities of induced characters of some 2-groups, Hokkaido Math. J. 31 (2002).
- [9] H. Zassenhaus: "The theory of groups", Chelsea, New York, 1949.