論文 Original Paper

Crystal Growth, Microhardness, Oxidation Behavior and Magnetic Properties of RMn_2Si_2 (R = La \sim Gd) Compounds

Shigeru OKADA*1, Kiyokata IIZUMI*2, Toetsu SHISHIDO*3, Kunio KUDOU*4

Abstract: RMn₂Si₂ (R = La, Ce, Pr, Nd, Sm, Gd) single crystals were grown from high temperature lead metal flux by slowly cooling under an argon atmosphere. The RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) crystals were obtained as thin plates with well-developed {001} faces. The largest crystals have dimensions of approximately 2.3 mm × 2.3 mm × 0.02 mm. LaMn₂Si₂ was generally obtained as powder of irregular shape. The as-grown RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) crystals were used for measurements of micro–Vickers hardness at room temperature, oxidation resistance heated in air and magnetic susceptibility using a SQUID magnetometer at low temperatures. The values of the microhardness for the {001} faces of RMn₂Si₂ are in the range of $5.8 \pm 0.4 \sim 6.5 \pm 0.5$ GPa. The oxidation process of crystals was studied at the temperature below 1473 K by TG-DTA analyses. The TG curves show that the oxidation of CeMn₂Si₂, PrMn₂Si₂, NdMn₂Si₂, SmMn₂Si₂, GdMn₂Si₂ crystals starts at about 738, 979, 999, 784, and 763 K, respectively. Weight gains of the compounds after TG determination were measured to be in the range of 16.4 to 29.2 mass%. The results of the magnetic susceptibility measurements agree with recent previous work which has been done on these compounds.

Keywords: RMn₂Si₂ (R = La, Ce, Pr, Nd, Sm, Gd); Single crystal; micro–Vickers hardness; Oxidation behavior; Magnetic susceptibility

1. Introduction

 RMn_2Si_2 (tetragonal, space group I4/mmm) crystals have attracted considerable interest because of their remarkable properties and potential application as high temperature thermoelectrics [1]. However, the data available on the properties of the RMn_2Si_2 are in most cases obtained from measurements on polycrystalline samples. Therefore, it is desirable to grow single crystals, to have more reliable information on the properties. Ternary rare earth manganese silicides have been synthesized by solidstate reaction methods and arc-melting methods [1, 2]. In Fig. 1, the crystal structure of the RMn_2Si_2 compounds with $ThCr_2Si_2$ -type structure is outlined. Layers of R-

Fig. 1 Crystal structure of RMn_2Si_2 (R = rare earth).

atoms (R = rare earth) are sandwiched by infinite layers of interconnected tetragonal SiMn₄ pyramids parallel to (001). Assuming a stoichiometric compound, Mn atoms are tetrahedrally surrounded by four Si neighbour thus being tetragonal pyramidally coordinated [3]. In the previous work, we reported the synthesis conditions of RMn₂Si₂ (R = Y, Tb, Dy, Ho, Er, Tm, Yb, Lu) crystals using molten lead flux, and some properties of the crystals [4–7]. In this work, we report experimental conditions for growing relatively large single crystals of RMn₂Si₂ (R = La, Ce,

^{*1} 工学部都市システム工学科, 教授, 工学博士 Department of Civil and Environmental Engineering, Faculty of Engineering, Professor, Dr. of Engineering; + Corresponding author: Shigeru Okada, Tel/fax: +81-3-5481-3292, E-mail address: sokada@kokushikan.ac.jp (S. Okada).

^{*2} 東京工芸大学,工学部ナノ化学科,助教授,博士(工学) Faculty of Engineering, Tokyo Polytechnic University, Associate Professor, Dr. of Engineering; 1583 Iiyama, Atsugi 243–0297

^{*3} 東北大学,金属材料研究所,助教授,工学博士 Institute for Materials Research, Tohoku University, Associate Professor, Dr. of Engineering; 2-1-1 Katahira, Aoba, Sendai 980-0812

^{*4} 神奈川大学,工学部機械工学科,專任講師,博士(工学) Faculty of Engineering, Kanagawa University, Lecturer, Dr. of Engineering; 3-27-1 Rokkakubashi, Kanagawa, Yokohama 221-8686

Pr, Nd, Sm, Gd) from a high temperature lead flux in an Ar atmosphere. La, Ce, Pr, Nd, Sm and Gd are selected as rare earth elements from the light and middle region of the lanthanide series. For the single crystals so obtained, crystal morphology, crystallographic data and chemical compositions were determined, and micro-Vickers hardness, oxidation resistance heated in air and magnetic susceptibility at low temperatures of these compounds were studied.

2. Experimental

2.1. Crystal growth

The reagents used to prepare the samples were small pieces of 99.9% rare earth (La, Ce, Pr, Nd, Sm, Gd), 99.9 \sim 99.99% Mn pieces, 99.99% Si powder and 99.99% Pb pieces. The rare earth (R = La, Ce, Pr, Nd, Sm, Gd), Mn and Si were mixed together at atomic ratios of R : Mn : Si = 1 : 2 : 2. The amount of Si in the starting materials was fixed at 0.4 g throughout all the experiments. Lead was added to these mixtures at a ratio of 3.8 : 1 in weight. Fig. 2 shows a flowchart of the syntheses process of RMn₂Si₂ crystals. The mixture of starting materials was placed in a high purity (99.9%) hBN crucible (20 mm diameter and 30 mm length) together with a hBN cover and heated in an Ar atmosphere at 1623 K for 5 h. The solution was cooled to

Expeimental

Fig. 2 Flowchart for experimental condition of RMn₂Si₂ (R = La, Ce, Pr, Nd, Sm, Gd) crystals.

1073 K at a rate of 50 K h^{-1} and then quenched to room temperature. Dissolving the lead in a solution of dilute acetic acid separated the crystals.

2.2. Characterization

The crystal structures and unit cell parameters of the phases were examined by the X-ray diffraction (XRD) with monochromatic Cu $K_{\alpha l}$ radiation. Relatively large crystals of RMn₂Si₂ were selected under a stereomicroscope. The morphology of the crystals was examined using a four-circle diffractometer and a scanning electron microscope (SEM). The chemical composition and impurity of the crystals were analyzed with an electron probe microanalyzer (EPMA) and an energy-dispersive detector (EDX).

The micro–Vickers hardness for the crystals was measured at room temperature in air. A load of 0.49 N was applied for 15 s at about four positions on a well developed $\{001\}$ plane of each crystal. The obtained values were averaged and the experimental error was estimated.

Oxidation resistance of RMn_2Si_2 crystals was studied by TG-DTA analysis [6, 8]. Pulverized samples of about 20 mg were heated at a rate of 10 K min⁻¹ in air.

Magnetic susceptibility of the powder samples of RMn_2 Si₂ was measured using a commercial superconducting quantum interference device (SQUID) magnetometer in the temperature range of 2 K to 300 K.

3. Results and discussion

The XRD evidence for the crystalline phases RMn₂Si₂ obtained after reaction is shown Fig. 3. As seen from Fig. 3, for La-Mn-Si system, LaMn₂Si₂, MnSi, Mn₅Si₃ and unknown phase were obtained, for Ce-Mn-Si system, CeMn₂Si₂, MnSi and unknown phase were obtained, for Pr-Mn-Si system, PrMn₂Si₂ and Mn₅Si₃ were obtained, for Nd-Mn-Si and Sm-Mn-Si systems, NdMn₂Si₂ or SmMn₂Si₂, Mn₅Si₃ and unknown phase were obtained, and for Gd-Mn-Si system, only GdMn₂Si₂ was obtained, while crystals of RMnSi (TiNiSi and PbFCl-type structures) and R₂Mn₃Si₅ (Sc₂Fe₃Si₅-type structure) [1] were not detected by XRD. The CeMn₂Si₂ (A), PrMn₂Si₂ (B), $NdMn_2Si_2$ (C), $SmMn_2Si_2$ (D) and $GdMn_2Si_2$ (E) single crystals, having silver-gray and metallic luster, were generally obtained in the form of thin plates with well developed $\{001\}$ faces as shown in Fig. 4. The largest crystals have dimensions of approximately $2.3 \text{ mm} \times 2.3 \text{ mm} \times 0.02$ mm. However, LaMn₂Si₂ was generally obtained as powder of irregular shape.

The basic crystal data and chemical compositions of RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) are listed in Table 1. The unit cell parameters of RMn₂Si₂ crystals are in relatively good agreement with previously published data (a = 0.4010(5) nm, c = 1.0523(5) nm for CeMn₂Si₂; a = 0.4025 nm, c = 1.0555 nm for PrMn₂Si₂; a = 0.40155(5) nm, c = 1.0542(5) nm and a = 0.4011 nm, c = 1.0552 nm for NdMn₂Si₂; a = 0.3975 nm, c = 1.0520 nm for SmMn₂Si₂; a = 0.3950 nm, c = 1.0478 for GdMn₂Si₂) [9]. The EDX results show that RMn₂Si₂ compounds have appreciable

homogeneity ranges. No evidence has been obtained for the presence of a lead containing phase in the crystals as concluded from EPMA and EDX of RMn₂Si₂ crystals.

The values of micro–Vickers hardness for {001} faces of the as-grown crystals are listed in Table 2. The values of the microhardness for CeMn₂Si₂, PrMn₂Si₂, NdMn₂Si₂, SmMn₂Si₂ and GdMn₂Si₂ are 5.8 ± 0.6 , 6.5 ± 0.5 , 6.3 ± 0.4 , 6.5 ± 0.4 and 6.8 ± 0.2 GPa, respectively. The hardness values of the RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) crystals were not reported in the literature earlier. These values of the RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) are found to be very similar to previously published data for RMn₂Si₂ (R = Er, Tm, Yb, Lu, Y) observed in the range of $5.0 \pm 0.4 \sim$ 7.9 ± 0.3 GPa [6–8].

The oxidation process of RMn_2Si_2 (R = Ce, Pr, Nd, Sm, Gd) crystals was studied below 1473 K by TG-DTA analyses, as shown in Fig. 5. The oxidation of CeMn_2Si_2, PrMn_2Si_2, NdMn_2Si_2, SmMn_2Si_2 and GdMn_2Si_2 crystals began to proceed at about 738, 979, 999, 784 and 763 K,

Compound	Crystal structure	Micro- hardness (GPa)	Ref.
CeMn ₂ Si ₂	tetragonal	$5.8\pm\!0.6$	This work
$PrMn_2Si_2$	tetragonal	6.5 ± 0.5	This work
$NdMn_2Si_2$	tetragonal	6.3 ± 0.4	This work
$SmMn_2Si_2$	tetragonal	6.5 ± 0.4	This work
$GdMn_2Si_2$	tetragonal	6.8 ± 0.2	This work
$ErMn_2Si_2$	tetragonal	$5.0\!\pm\!0.4$	(6)
$TmMn_2Si_2$	tetragonal	6.3 ± 0.3	(6)
$YbMn_2Si_2$	tetragonal	$7.9\!\pm\!0.3$	(6)
$LuMn_2Si_2$	tetragonal	6.1 ± 0.4	(6)
YMn ₂ Si ₂	tetragonal	$5.6\!\pm\!0.5$	(7), (8)

Table 1 Results of the unit cell parameters and chemical analyses for RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) crystals

Formula unit	CeMn ₂ Si ₂	PrMn ₂ Si ₂	$NdMn_2Si_2$	$SmMn_2Si_2$	$GdMn_2Si_2$
Crystal	plate	plate	plate	plate	plate
Crystal structure	tetragonal	tetragonal	tetragonal	tetragonal	tetragonal
Space group	I4/mmm	I4/mmm	I4/mmm	I4/mmm	I4/mmm
<i>a</i> (nm)	0.4009(1)	0.4029(1)	0.4008(1)	0.3973(1)	0.3947(1)
<i>c</i> (nm)	1.0519(1)	1.0557(1)	1.0542(1)	1.0510(1)	1.0470(1)
<i>V</i> (nm ³)	0.1691(1)	0.1714(1)	0.1693(1)	0.1659(1)	0.1631(1)
Formula units per unit cell (Z)	2	2	2	2	2
Ce (mass%)*	44.4	—	—		—
Pr (mass%)*	_	44.7	—		—
Nd (mass%)*		—	45.2		—
Sm (mass%)*	—	—	—	47.2	—
Gd (mass%)*	—	—	—		47.8
Mn (mass%)*	37.4	37.4	36.3	35.1	33.6
Si (mass%)*	18.2	17.9	18.5	17.7	18.6
Chemical composition	$Ce_{1.0}Mn_{2.1}Si_2$	$Pr_{1.0}Mn_{2.1}Si_2 \\$	$Nd_{0.9}Mn_{2.0}Si_2 \\$	$Sm_{1.0}Mn_{2.0}Si_2 \\$	$Gd_{0.9}Mn_{1.9}Si_2$

45

Fig. 4 SEM micrographs of RMn_2Si_2 (R = Ce, Pr, Nd, Sm, Gd) crystals. (A) $CeMn_2Si_2$, (B) $PrMn_2Si_2$, (C) $NdMn_2Si_2$, (D) $SmMn_2Si_2$, (E) $GdMn_2Si_2$

Table 3 Results of the TG/DTA measurements for RMn₂Si₂ (R = Ce, Pr, Nd, Sm, Gd) compounds

Compound	Oxidation start (K)	Exothermic maximum (K)	Weight gain (mass%)	Oxidation products
CeMn ₂ Si ₂	738	1117, 1184, 1322, 1431	29.2	Ce ₄ Si ₃ O ₁₂ , MnSiO ₃ , Ce ₂ O ₃ , Mn ₅ Si ₃ , unknown
$PrMn_2Si_2$	979	1200, 1305, 1366, 1444	26.8	Pr ₄ Si ₃ O ₁₂ , MnSiO ₃ , Mn ₅ Si ₃ , unknown
$NdMn_2Si_2$	999	1218, 1335, 1392	16.4	Nd ₄ Si ₃ O ₁₂ , Mn ₅ Si ₃ , MnSiO ₃ , unknown
$\mathrm{Sm}\mathrm{Mn}_2\mathrm{Si}_2$	784	1333, 1408, 1453	19.6	Sm ₄ Si ₃ O ₁₂ , MnSiO ₃ , Mn ₅ Si ₃ , Sm ₂ O ₃
$GdMn_2Si_2$	763	1213, 1270, 1402	23.9	Gd ₄ Si ₃ O ₁₂ , Gd ₂ O ₃ , unknown

respectively. The weight gain of the compounds after heating in air up to 1473 K is 29.2, 26.8, 16.4, 19.6 and 23.9 mass%, respectively. CeMn₂Si₂ shows low oxidation resistance, while NdMn₂Si₂ show relatively high oxidation resistance. The final oxidation products were R₄Si₃O₁₂ (R = Ce, Pr, Nd, Sm, Gd), R₂O₃ (R = Ce, Sm, Gd), MnSiO₃, Mn₅Si₃ [10] and an unknown phase, and so the exothermic peaks are attributed to oxidation products. The results of TG-DTA are listed in Table 3. Magnetic characterization of the RMn_2Si_2 (R = Ce, Pr, Nd, Sm, Gd) samples was carried out by measuring the magnetic susceptibilities. Our results agree with recent previous work which has been done on these compounds [11–14].

Fig. 5 TG-DTA curves of RMn_2Si_2 (R = Ce, Pr, Nd, Sm, Gd) crystals heated in air.

4. Conclusions

- RMn₂Si₂ (R = La, Ce, Pr, Nd, Sm and Gd) crystals were grown from high temperature lead metal flux by slowly cooling under an argon atmosphere at 1623 K for 5 h. The CeMn₂Si₂, PrMn₂Si₂, NdMn₂Si₂, SmMn₂ Si₂ and GdMn₂Si₂ single crystals were generally obtained in the form of thin plates with well developed {001} faces. LaMn₂Si₂ was generally obtained as powder of irregular shape.
- (2) The unit cell parameters of RMn₂Si₂ (R = Ce, Pr, Nd, Sm and Gd) crystals are in relatively good agreement with previously published data. The results of chemical analyses show that RMn₂Si₂ compounds have appreciable homogeneity ranges.
- (3) The values of the microhardness for the $\{001\}$ faces of RMn₂Si₂ (R = Ce, Pr, Nd, Sm and Gd) are in the range of $5.8 \pm 0.4 \sim 6.5 \pm 0.5$ GPa.
- (4) The oxidation process of crystals was studied at the temperature below 1473 K by TG-DTA analyses. The TG curves show that the oxidation of CeMn₂Si₂, PrMn₂Si₂, NdMn₂Si₂, SmMn₂Si₂, GdMn₂Si₂ crystals

starts at about 738, 979, 999, 784, and 763 K, respectively. Weight gains of the compounds after TG determination were measured to be in the range of 16.4 to 29.2 mass%.

(5) The results of the magnetic susceptibility measurements agree with recent previous work which has been done on these compounds.

Acknowledgements

This study was performed under the Interuniversity Cooperative Research Program of the Laboratory for Advanced Materials (LAM), Institute for Materials Research (IMR), Tohoku University. The authors would like thank to Prof. Dr. M. Ogawa and Miss N. Suzuki of Tokyo Polytechnic University for their help in the experiments.

References

- E. Parthé, B. Chabot, in: K. A. Gschneidner Jr., L. Eyring (Eds.), Handbook of Physics and Chemistry of Rare Earths, Vol. 6, North-Holland, Amsterdam, 1984, p. 212.
- [2] K. S. V. Narasimhan, V. Us Rao, W. E. Wallace, AIP Conf. Proc. 29 (1976) 594.
- [3] A. Grytsiv, A. L-Jasper, H. Flandorfer, P. Rogl, K. Hiebl, C. Godart, T. Velikanova, J. Alloys Compd. 266 (1998) 7.
- [4] S. Okada, M. Ogawa, T. Shishido, K. Iizumi, K. Kudou, H. Kanari, K. Nakajima, P. Rogl, J. Crystal Growth 236 (2002) 617.
- [5] S. Okada, K. Kudou, T. Mori, K. Iizumi, T. Shishido, T. Tanaka, K. Nakajima, P. Rogl, Jpn. J. Appl. Phys. 41 (2002) L555.
- [6] S. Okada, K. Kudou, T. Mori, K. Iizumi, T. Shishido, T. Tanaka, P. Rogl, J. Crystal Growth 244 (2002) 267.
- [7] S. Okada, K. Kudou, T. Mori, K. Iizumi, T. Shishido, T. Tanaka, P. Rogl, Bulletin of Science and Engineering Research Institute, Kokushikan University, No. 15, March, (2003) 23.
- [8] K. Kudou, S. Okada, T. Mori, K. Iizumi, T. Shishido, T. Tanaka, H. Kanari, P. Rogl, J. Alloys Compd. 358 (2003) 182.
- [9] P. Rogl, in: K. A. Gschneidner Jr., L. Eyring (Eds.), Handbook of Physics and Chemistry of Rare Earths, Vol. 7, North-Holland, Amsterdam, 1984, p.26.
- [10] S. Okada, T. Shishido, Y. Ishizawa, M. Ogawa, K. Kudou, T. Fukuda, T. Lundström, J. Alloys Compd. 317-318 (2001) 315.
- [11] A. Szytula, J. Leciejewicz, in: K. A. Gschneidner Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 12, North-Holland, Amsterdam, 1989, p.133.
- [12] R. Welter, G. Venturini, D. Fruchart, B. Malaman, J. Alloys Compd. 191 (1993) 263.
- [13] I. Nowik, Y. Levi, I. Felner, E. R. Bauminger, J. Magn. Magn. Mater. 47 (1995) 373.
- [14] S. Okada, K. Iizumi, T. Mori, T. Shishido, K. Kudou, T. Tanaka, P. Rogl, T. Lundström, J. Alloys Compd. 383 (2004) 254.