論文 Original Paper

On the extensions of the cyclic p-groups

Katsusuke SEKIGUCHI

Abstract

Let ϕ be a faithful irreducible character of the cyclic group C_{n} of order p^{n}, where p is an odd prime. We study the p-group G containing C_{n} such that the induced character ϕ^{G} is also irreducible. The purpose of this paper is to study the subgroup $N_{G}\left(N_{G}\left(N_{G}\left(C_{n}\right)\right)\right)$ of G.

Keywords: p-group, extension, irreducible induced character, faithful irreducible character

1. Introduction

Let G be a finite group. We denote by $\operatorname{Irr}(G)$ the set of complex irreducible characters of G and by $\operatorname{FIrr}(G)(\subset$ $\operatorname{Irr}(G))$ the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we denote by C_{n} the cyclic group of order p^{n}. Further, we denote by Q_{n}, D_{n} and $S D_{n}$ the generalized quaternion group, the dihedral group of order $2^{n+1}(n \geqq 2)$ and the semidihedral group of order $2^{n+1}(n \geqq 3)$, respectively.

When G is a p-group, for any $\chi \in \operatorname{Irr}(G)$, there exists a subgroup H of G and a linear character ϕ of H such that $\phi^{G}=\chi$. If we set $N=\operatorname{Ker} \phi$, then $N \triangleleft H$ and ϕ is a faithful irreducible character of $H / N \cong C_{n}$, for some non-negative integer n. In this paper, we will consider the case when N $=1$, that is, ϕ is a faithful linear character of $H \cong C_{n}$.

We consider the following:
Problem A. Let p be an odd prime, and ϕ be a faithful irreducible character of C_{n}. Determine the p-group G such that $C_{n} \subset G$ and the induced character ϕ^{G} is also irreducible.

Since all the faithful irreducible characters of C_{n} are algebraically conjugate to each other, the irreducibility of $\phi^{G}\left(\phi \in \operatorname{FIrr}\left(C_{n}\right)\right)$ is independent of the choice of ϕ, and depends only on n.
This problem has been solved in each of the following cases:
(1) $C_{n} \triangleleft G$ ([2]),
(2) G has a subgroup H containing C_{n} such that $C_{n} \triangleleft H$ and $[G: H]=p([5])$.
See also [8] and [9].
On the other hand, when $p=2$, Yamada and Iida [3] considered the following:

Problem B. Let ϕ be a faithful irreducible character of H, where $H=Q_{n}$ or D_{n} or $S D_{n}$. Determine the 2-group G such that $H \subset G$ and the induced character ϕ^{G} is also irreducible.

[^0]Yamada and Iida [3] solved Problem B in the case when $[G ; H]=2$ or 4 and we have solved it when $[G ; H]=8$ ([6]) for all $H=Q_{n}$ or D_{n} or $S D_{n}$.
Moreover, we have recently solved Problem B completely ([7]). In [7], we showed that

$$
G=N_{G}(H) \text { or } N_{G}\left(N_{G}(H)\right)
$$

for all $H=Q_{n}$ or D_{n} or $S D_{n}$, if G satisfies the conditions of Problem B. Here, as usual, $N_{G}(H)$ and $N_{G}\left(N_{G}(H)\right)$ are the normalizers of H and $N_{G}(H)$ in G, respectively. This means that, if we define subgroups of G by

$$
M_{1}=N_{G}(H) \text {, and } M_{i+1}=N_{G}\left(M_{i}\right) \text {, for } i \geqq 1 \text {, }
$$

then

$$
H \subset M_{1} \subset M_{2}=M_{3}=M_{4}=\cdots=G,
$$

for all $H=Q_{n}$ or D_{n} or $S D_{n}$.
In this paper, we consider Problem A. We also define subgroups of G by

$$
N_{1}=N_{G}\left(C_{n}\right), \text { and } N_{i+1}=N_{G}\left(N_{i}\right), \text { for } i \geqq 1 .
$$

The purpose of this paper is to study the group $N_{3}=N_{G}$ $\left(N_{G}\left(N_{G}\left(C_{n}\right)\right)\right.$).
Throughout this paper, \mathbf{Z} and \mathbf{N} denote the set of rational integers and the natural numbers, respectively.

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime.
First, we introduce the following groups:
(i) $G(n, m)=\left\langle a, b_{m}\right\rangle$ with $a^{p^{n}}=b_{m}^{p^{\prime \prime}}=1, b_{m} a b_{m}^{-1}=a^{1+p^{n-m}}, \quad(m \leqq n-1)$.
(ii) $\quad G(n, m, t)=\left\langle a, b_{m}, v_{t}\right\rangle\left(\triangleright G(n, m)=\left\langle a, b_{m}\right\rangle\right)$ with $a^{p^{n}}=b_{m}^{p^{m}}=1, b_{m} a b_{m}^{-1}=a^{1+p^{n-m}}$, $v_{t} a v_{t}^{-1}=a^{1+p^{n-m-1}} b_{m}^{m-1}$, $v_{t}^{p^{t}}=b_{m}, v_{t} b_{m} v_{t}^{-1}=b_{m} \quad(4 m \leqq n, 1 \leqq t \leqq m)$.
(iii) $\quad G(n, 1,1,1)=\left\langle a, b_{1}, v_{1}, x\right\rangle(\triangleright G(n, 1,1)$ $\left.=\left\langle a, b_{1}, v_{1}\right\rangle\right)$ with
$a^{p^{n}}=b_{1}^{p}=1, b_{1} a b_{1}^{-1}=a^{1+p^{n-1}}, v_{1} a v_{1}^{-1}=a^{1+p^{n-2}} b_{1}$, $v_{1}^{p}=b_{1}, v_{1} b_{1} v_{1}^{-1}=b_{1}, x^{-1}=a^{1+p^{n-3}} v_{1}, x^{p}=v_{1}$, $x v_{1} x^{-1}=v_{1}, x b_{1} x^{-1}=b_{1} \quad(7 \leqq n)$.
We can see that $G(n, m, t)$ (resp. $G(n, 1,1,1))$ is an extension group of $G(n, m)$ (resp. $G(n, 1,1)$) by using Proposition 1 below:

Proposition 1. Let N be a finite group such that $G \triangleright N$
and $G / N=\langle u N\rangle$ is a cyclic group of order m. Then $u^{m}=c$ $\in N$. If we put $\sigma(x)=u x u^{-1}, x \in N$, then $\sigma \in \operatorname{Aut}(N)$ and (i) $\sigma^{m}(x)=c x c^{-1},(x \in N)(i i) \sigma(c)=c$.

Conversely, if $\sigma \in \operatorname{Aut}(N)$ and $c \in N$ satisfy (i) and (ii), then there exists one and only one extension group G of N such that $G / N=\langle u N\rangle$ is a cyclic group of order m and $\sigma(x)=v x v^{-1}(x \in N)$ and $v^{m}=c$.

Proof. For instance, see [10, III, § 7].

We now state the known results concerning Problem A.
Theorem 0.1 (Iida [2]). Let G be a p-group which contains C_{n} as a normal subgroup of index p^{m}. Let $\phi \in$ $\operatorname{FIrr}\left(C_{n}\right)$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$. Then $m \leqq n-1$, and G $\cong G(n, m)$.

Corollary 0.2. Let G be a p-group which contains C_{n}. Let $\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$. Then $N_{1} \cong$ $G(n, m)$.

Theorem 0.3 ([5]). Let G be a p-group which contains C_{n}, and let $\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Suppose that $\left[G: C_{n}\right]=p^{m+1}, \phi^{G}$ $\in \operatorname{Irr}(G)$, and $n-3 \geq 2 m$. Further, suppose that there exists a subgroup H of G such that $H \triangleright C_{n}$ and $[G: H]=p$. Then
(1) $G \cong G(n, m+1)$ if C_{n} is a normal subgroup of G.
(2) $G \cong G(n, m, 1)$ if C_{n} is not a normal subgroup of G.

Theorem 0.4 ([8]). Let p be an odd prime. Let G be a p-group which contains $C_{n}=\langle a\rangle$. We assume that $\left[G: C_{n}\right]$ $\geq p^{3}$. Define the subgroups of G by

$$
N_{1}=N_{G}\left(C_{n}\right), \text { and } N_{i+1}=N_{G}\left(N_{i}\right), \text { for } i=1,2 .
$$

Let $\phi \in \operatorname{FIrr}\left(C_{n}\right)$ and $7 \leqq n$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$, and [$\left.N_{1}: C_{n}\right]=p$. Then
(1) $N_{2} / N_{1} \cong C_{1} \quad$ and $\quad N_{2} \cong G(n, 1,1)$,
(2) $N_{3} / N_{2} \cong C_{1} \quad$ and $\quad N_{3} \cong G(n, 1,1,1)$.

Recently, we have determined the subgroup $N_{2}=N_{G}\left(N_{G}\right.$ $\left(C_{n}\right)$).

Theorem 0.5 ([9]). Let p be an odd prime. Let G be a p-group which contains $C_{n}=\langle a\rangle$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$ for any $\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Suppose further that $4 m \leqq n$, where $\left[N_{1}: C_{n}\right]=p^{m}$. Then
(1) $N_{2}=N_{G}\left(N_{G}\left(C_{n}\right)\right) \cong G(n, m, t)$, if $\left[G: N_{1}\right]$ $=p^{t} \leqq p^{m-1}$.
(2) $N_{2}=N_{G}\left(N_{G}\left(C_{n}\right)\right) \cong G(n, m, m)$, if $\left[G: N_{1}\right] \geqq p^{m}$.

Remark 1. Conversely, it is easy to see that the groups $G(n, 1,1)$ and $G(n, 1,1,1)$ satisfy the condition ($E X, C$), which is defined in section 3 of this paper. Hence these groups satisfy the conditions of Problem A.

Our main theorem is the following:

Theorem. Let p be an odd prime. Let G be a p-group which contains $C_{n}=\langle a\rangle$. Suppose that $\phi^{G} \in \operatorname{Irr}(G)$ for any
$\phi \in \operatorname{FIrr}\left(C_{n}\right)$. Suppose further that $6 m \leqq n$, where $\left[N_{1}: C_{n}\right]$ $=p^{m}$. Then
(1) $N_{3} / N_{2}=N_{G}\left(N_{2}\right) / N_{2} \cong C_{r}$ for some $r \in \mathbf{N}, r \leqq m$.
(2) Suppose that $N_{2}=\langle a, b, v\rangle$, then there exists $g \in N_{3}$ such that $N_{3}=\langle a, b, v, g\rangle$, and g satisfies the following relations:
$g a g^{-1}=a^{1+k p^{n-2 m-1}, ~} v^{p^{m-r}}, g v g^{-1}=v$, for some $k \in \mathbf{Z},(k, p)=1$.

For the rest of this section, we state some results concerning the criterion of the irreducibilities of induced characters and others, which we need in section 3.
We denote by $\zeta=\zeta_{p^{n}}$ a primitive p^{n} th root of unity. It is known that, for $C_{n}=\langle a\rangle$, there are p^{n} irreducible characters $\phi_{v}\left(1 \leqq \nu \leqq p^{n}\right)$ of C_{n} :

$$
\phi_{v}\left(a^{i}\right)=\zeta^{v i}, \quad\left(1 \leqq i \leqq p^{n}\right) .
$$

The irreducible character ϕ_{v} is faithful if and only if (v, p) $=1$.
We will need the following result of Shoda (cf [1, p. 329]):
Proposition 2. Let G be a group and H be a subgroup of G. Let ϕ be a linear character of H. Then the induced character ϕ^{G} of G is irreducible if and only if, for each $x \in$ $G-H=\{g \in G \mid g \notin H\}$, there exists $h \in x H x^{-1} \cap H$ such that $\phi(h) \neq \phi\left(x^{-1} h x\right)$. (Note that, when ϕ is faithful, the condition $\phi(h) \neq \phi\left(x^{-1} h x\right)$ holds if and only if $\left.h \neq x^{-1} h x\right)$.

Using this result, we have the following:
Proposition 3. Let $\langle a\rangle=C_{n} \subset G$, and ϕ be a faithful irreducible character of C_{n}. Then the following conditions are equivalent:
(1) ϕ^{G} is irreducible,
(2) For each $x \in G-C_{n}$, there exists $y \in\langle a\rangle \cap x\langle a\rangle x^{-1}$ such that $x^{-1} y x \neq y$.

Definition. When the condition (2) of Proposition 3 holds, we say that G satisfies (EX, C).
Let H be a group. For a normal subgroup N of H, and any $g, h \in H$, we write

$$
g \equiv h \quad(\bmod N)
$$

when $g^{-1} h \in N$. For an element $g \in H$, we denote by $|g|$ the order of g.

3. Proof of Theorem

Let $N_{1}=N_{G}\left(C_{n}\right), N_{2}=N_{G}\left(N_{1}\right)$, and $N_{3}=N_{G}\left(N_{2}\right)$.
Then, by [2], we an take an element $b_{m} \in N_{1}-C_{n}=\{g \in$ $\left.N_{1} \mid g \notin C_{n}\right\}$ such that

$$
N_{1}=\left\langle a, b_{m} \mid a^{p^{n}}=b_{m}^{p^{m}}=1, b_{m} a b_{m}^{-1}=a^{1+p^{n-m}}\right\rangle \cong G(n, m) .
$$

Hereafter, we use the notation b instead of b_{m}. These elements a and b satisfy the following

Lemma 1 ([9]) Suppose that $n \geqq 2 m$, then the following equalities hold for any $i, j, k \in \mathbf{Z}$ and $x \in \mathbf{N}$.
(i) $a b^{p^{m-1}} \equiv b^{p^{m-1}} a \quad\left(\bmod \left\langle a^{\left.p^{p-t}\right\rangle}\right\rangle\right) .(0 \leqq t \leqq m)$.
(ii) $b a^{p^{m}} b^{-1}=a^{p^{m}}$.
(iii) $b^{j} a^{i} b^{-j}=a^{i\left(1+j p^{n-m}\right)}$.
(iv) $\left(a^{i} b^{j}\right)^{x}=a^{i x+i j p^{n-m}(x(x-1) / 2)} b^{x j}$
(v) $\quad\left(a^{i} b^{j p^{m-1}}\right)^{p^{t}}=a^{i p^{t}} \quad(0 \leqq t \leqq m)$.
(vi) $\quad\left(a^{i} b^{j p^{m-1}}\right)^{1+k p^{t}}=a^{i\left(1+k p^{\prime}\right)} b^{j p^{m-t}} \quad(0 \leqq t \leqq m)$.

On the other hand, by [9], we can take $d \in \mathbf{Z}$, and $v_{m} \in$ $N_{2}-N_{1}=\left\{g \in N_{2} \mid g \notin N_{1}\right\}$ such that $(d, p)=1$ and $a_{1}=a^{d}$, b and v_{m} generate N_{2}. Moreover, $N_{2} \cong G(n, m, m)$. That is,
$N_{2}=\left\langle a_{1}, b, v_{m}\right\rangle \cong G(n, m, m)$,
with

$$
\begin{aligned}
& a_{1}^{p^{n}}=b^{p^{m}}=1, \quad b a_{1} b^{-1}=a_{1}^{1+p^{n-m}}, \\
& v_{m} a v_{m}^{-1}=a_{1}^{1+p^{n-2 m}} b, \quad v_{m}^{p^{m}}=b, \quad v_{m} b v_{m}^{-1}=b .
\end{aligned}
$$

Hereafter, we use the notation a (resp. v) instead of a_{1} (resp. v_{m}).

Concerning to these elements a, b, v we can prove the following

Lemma 2 ([9]) Suppose that $n \geqq 4 m$, then the following equalities hold for any $i, j \in \mathbf{Z}$ and $x \in \mathbf{N}$,
(i) $v a^{p^{2 m}} v^{-1}=a^{p^{2 m}}$.
(ii) $v^{j} a v^{j}=a^{1+j p^{n-2 m}} b^{j}$.
(iii) $\quad\left(a^{i} v^{j}\right)^{x} \equiv a^{i x+i j p^{n-2 m}(x(x-1) / 2)} b^{i j(x(x-1) / 2)} v^{x j}\left(\bmod \left\langle a^{p^{n-m}}\right\rangle\right)$.
(iv) $\left(a^{i} v^{j}\right)^{p^{m}} \equiv a^{i p^{m}} b^{j}\left(\bmod \left\langle a^{p^{n-m}}\right\rangle\right)$.
(v) $\quad\left(a^{i} v^{j}\right)^{p^{2 m}} \equiv a^{i p^{2 m}}$

Let $f: N_{3} \rightarrow N_{3} / N_{2}$ be a natural epimorphism of groups. For $g \in N_{3}$, we write $o(g)$ for the order of $f(g)$ in N_{3} / N_{2}.

Define $p^{r_{0}}=\max \left\{o(g) \mid g \in N_{3}\right\}$, and take an element $g_{0} \in$ N_{3} such that $o\left(g_{0}\right)=p^{r_{0}}$. Hereafter we fix the element g_{0}.
Then we can show the following:

Claim I. (i) $r_{0} \leqq m$.
(ii) For any $g \in N_{3}$, there exist integers s_{1}, k_{1}, j_{1}, satisfying $\left(k_{1}, p\right)=\left(j_{1}, p\right)=1$, such that the following equalities hold:
$\left(a^{s_{1}} g\right) a\left(a^{s_{1}} g\right)^{-1}=a^{1+k_{1} p^{n-2 m-r}} v^{p^{m-r} j_{1}}$,
$\left(a^{s_{1}} g\right) v\left(a^{s_{1}} g\right)^{-1}=v$,
where $o(g)=p^{r}$.
Proof of Claim I. (i). Take an element $g \in N_{3}$. and let $o(g)=p^{r}$. We will show that $r \leqq m$.

By the same way as in the proof of [9], we can find $s_{1} \in \mathbf{Z}$ such that $\left(a^{S_{1}} g\right) v\left(a^{s_{1}} g\right)^{-1}=v$. Set $g_{1}=a^{S_{1}} g$, and write $g_{1} a g_{1}^{-1}$ $=a^{i} v^{j}$.

Since $g_{1} a^{p^{2 m}} g_{1}^{-1}=\left(a^{i} v^{j}\right)^{p^{2 m}}=a^{i p^{2 m}}$, by Lemma $2(\mathrm{v})$, we must have $(p, i)=1$.

Define the abelian subgroup M of G by

$$
M=\left\langle\boldsymbol{a}^{p^{n-2 m}}\right\rangle \times\langle b\rangle
$$

It is easy to see that N_{2} / M is the abelian group. Further, since $6 m \leqq n$, by our assumption, we have $g_{1} a^{p^{n-2 m}} g_{1}^{-1}=$ $a^{i p^{n-2 m}}$. So, we can see that $g_{1} M g_{1}^{-1}=M$.

Since N_{2} / M is the abelian group, we have $v a \equiv a v(\bmod$ $M)$. Using this relation repeatedly, we have $g_{1}^{l} a g_{1}^{-l} \equiv a^{i} v^{j\left(i^{l-1+\cdot+i+1)}\right.} \quad(\bmod M)$,
for any $l \in \mathbf{N}$.
In particular,

$$
g_{1}^{p^{r}} \mathrm{a} g_{1}^{-p^{r}} \equiv a^{i p^{r}} v^{j\left(i \nu^{r}-1+\cdot+i+1\right)} \quad(\bmod M)
$$

But $g_{1}^{p^{r}} \in N_{2}$ and N_{2} / M is the abelian group, so,

$$
g_{1}^{p^{r}} \mathrm{a} g_{1}^{-p^{r}} \equiv a \quad(\bmod M)
$$

Therefore we must have

$$
\begin{equation*}
i^{p^{r}} \equiv 1 \quad\left(\bmod p^{n-2 m}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
j\left(i^{p^{r-1}}+\cdot+i+1\right)=j\left(\frac{i^{p^{r}}-1}{i-1}\right) \equiv 0 \quad\left(\bmod p^{m}\right) \tag{2}
\end{equation*}
$$

By (1), we can write as $i=1+i_{1} p^{t}$, for some $i_{1} \in \mathbf{Z}$ and $t \in$ N.

So,

$$
\begin{equation*}
j\left(i^{p^{r-1}}+\cdot+i+1\right)=j\left(\frac{i^{p^{r}}-1}{i-1}\right) \equiv j p^{r} w \tag{3}
\end{equation*}
$$

for some integer $w,(p, w)=1$.
Suppose that $r \geqq m+1$, then

$$
j\left(i^{p^{r-1}}+\cdot+i+1\right) \equiv 0 \quad\left(\bmod p^{m}\right)
$$

This means that $g_{1}^{p^{r-1}} a g_{1}^{-p^{r-1}} \in M$ and $g_{1}^{p^{r-1}} \in N_{2}$, which contradicts our hypothesis that $o\left(g_{1}\right)=p^{r}$. Thus the proof of Claim I (i) is completed.
(ii). By (1) and (3), we can write as $i=1+k_{1} \mathrm{p}^{\mathrm{n}-2 m-r}$, and $j=p^{m-r} j_{1}$ for some integers k_{1} and j_{1}. We have

$$
\begin{equation*}
g_{1} a g_{1}^{-1}=a^{1+k_{1} p^{n-2 m-r}} v^{p^{m-r} j_{1}}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1} v g_{1}^{-1}=v \tag{5}
\end{equation*}
$$

Suppose that $\left(p, j_{1}\right)=p$, then by the equality

$$
\begin{equation*}
j\left(i^{p^{r-1}-1}+\cdot+i+1\right)=j\left(\frac{i^{p^{r-1}}-1}{i-1}\right)=j p^{r-1} w_{1} \tag{6}
\end{equation*}
$$

we can see that $g_{1}^{p^{r-1}} \in N_{2}$, which contradicts the hypothesis that $o\left(g_{1}\right)=p^{r}$. So, we must have $\left(p, j_{1}\right)=1$.
Suppose that $\left(p, k_{1}\right)=p$. Write as $k_{1}=k_{2} p$, for some $k_{2} \in$
Z. Since $n \geqq 6 m$, we have

$$
g_{1} a^{p^{n-2 m-r}} g_{1}^{-1}=a^{p^{n-2 m-r}}
$$

Therefore

$$
g_{1}^{l} \mathrm{a} g_{1}^{-1}=a^{1+l k_{1} p^{n-2 m-r}} v^{p^{m-r} j_{j} l}
$$

for any $l \in \mathbf{N}$.
In particular,

$$
g_{1}^{p_{1}^{r-1}} a g_{1}^{-p^{r-1}}=a^{1+k_{1} p^{n-2 m-1}} v^{j_{1} p^{m-1}}=a^{1+k_{2} p^{n-2 m}} v^{j_{1} p^{m-1}}
$$

And

$$
g_{1}^{p^{r-1}} a^{p^{m+1}} g_{1}^{-p^{r-1}}=a^{\mathrm{p}^{m+1}}\left(1+k_{1} p^{n-2 m-1}\right)=a^{p^{m+1}}\left(1+\mathrm{k}_{2} p^{n-2 m}\right) .
$$

So, we can see that

$$
g_{1}^{p^{r-1}}\langle a\rangle g_{I}^{-p^{r-1}} \cap\langle\boldsymbol{a}\rangle=\left\langle\boldsymbol{a}^{p^{m+1}}\right\rangle
$$

On the other hand, since

$$
\operatorname{vav}^{-1}=a^{1+p^{n-2 m}} b
$$

we have

$$
v a^{p^{m+1}} v^{-1}=a^{p^{m+1}\left(1+p^{n-2 m}\right)}
$$

So,

$$
v^{-k_{2}}\left(g_{1}^{p r-1} a^{p^{m+1}} g_{1}^{-p^{r-1}}\right) v^{k_{2}}=v^{-k_{2}}\left(a^{p+1}\left(1+k_{2} p^{n-2 m}\right)\right) v^{k_{2}}=a^{p^{m+1}}
$$

which contradicts our hypothesis that G satisfies (EX, C). Thus we must have $\left(k_{1}, p\right)=1$. and we have completed the proof of (ii).
Claim II. $\quad N_{3}$ is generated by a, b, v and g_{0}.

$$
N_{3}=\left\langle a, b, v, g_{0}\right\rangle
$$

Proof of Claim II. Take an arbitrary element $h \in N_{3}$. Let $o(h)=p^{t_{1}}$. Then we can find $x_{1} \in \mathbf{Z}$, such that $h_{1}=a^{x_{1}} h$ satisfies the following equalities:

$$
h_{1} a h_{I}^{-I}=a^{1+d_{1} p^{n-2 m-t_{1}}} v^{d_{2} p^{m-t_{1}}},
$$

and

$$
h_{1} v h_{1}^{-1}=v
$$

where $\left(p, d_{1}\right)=\left(p, d_{2}\right)=1$. Since $t_{1} \leqq r_{0}$, we can take an ele-
ment $u \in\left\langle a, b, v, g_{0}^{p^{n-1}}\right\rangle$ such that
$u^{-1} a u=a^{1+e, p^{n} p^{n-2 m-1}} v^{e p^{m-l_{1}}}$,
and

$$
u^{-1} v u=v,
$$

where $\left(p, e_{1}\right)=\left(p, e_{2}\right)=1$. Let y be the integer satisfying $e_{2} y \equiv-d_{2}\left(\bmod p^{m+t_{1}}\right)$, and set $u_{1}=u^{y}$. Then

$$
u_{1}^{-1} a u_{1}=a^{1+e_{y} y p^{n-2 m-1}} v^{e_{2} y p^{m-1_{1}}}=a^{1+e_{y} y p^{n-2 m-1}} v^{-d_{2} p^{m-1_{1}}}
$$

and

$$
u_{1}^{-1} v u_{1}=v .
$$

Therefore we have

$$
\begin{aligned}
u_{1}^{-1}\left(h_{1} a h_{1}^{-1}\right) u_{1}= & u_{1}^{-1}\left(a^{1+d_{1}}{ }^{p n-2 m-1} v^{d_{2} p^{m-1}}\right) u_{1} \\
& =a^{1+\left(e_{1}, y+d_{1}\right) p^{n-2 m-1}} \in\langle\mathrm{a}\rangle .
\end{aligned}
$$

This means that $u_{1}^{-1} h_{1} \in N_{G}\left(C_{n}\right)=N_{1}$, so we have $h_{1} \in\langle a$, $\left.b, v, g_{0}\right\rangle$. This complete the proof of Claim II.
Finally, we show the rest of the proof of the theorem.
Let

$$
g_{0} a g_{0}^{-1}=a^{1+k_{0} p^{n-2 m-\tau_{0}}} v^{p m-\rho_{j}},
$$

and

$$
g_{0} v g_{0}^{-1}=v,
$$

where $\left(p, k_{0}\right)=\left(p, j_{0}\right)=1$. Since $\left(j_{0}, p\right)=1$, we can find the integer c such that

$$
j_{0} c \equiv 1 \quad\left(\bmod p^{m+r_{0}}\right)
$$

Then, if we put $g_{1}=g_{0}^{c}$, we get

$$
g_{1} a g_{I}^{-1}=a^{1+c k_{0} p^{n-2 m-1}} v^{p m-c o c j_{0}}=a^{1+c k_{0} p^{n-2 m-1}} v^{v^{m-r_{0}}},
$$

and
$g_{1} v g_{1}^{-1}=v$.

Thus the proof of the theorem is completed.

References

[1] C. Curtis and I. Reiner: "Representation theory of finite groups and associative algebras', Interscience, New York, 1962.
[2] Y. Iida: Normal extensions of a cyclic p-group, Comm. Algebra 30 (2002), no. 4, 1801-1805.
[3] Y. Iida and T. Yamada: Extensions and induced characters of quaternion, dihedral and semidihedral groups, SUT J. Math. 27 (1991), 237-262.
[4] Y. Iida and T. Yamada: Types of faithful metacyclic 2groups, SUT J. Math. 28 (1992), 23-46.
[5] K. Sekiguchi: Irreducibilities of the induced characters of cyclic p-groups, Math. J. of Okayama Univ. 41 (1999).
[6] K. Sekiguchi: Extensions of some 2-groups which preserve the irreducibilities of induced characters, Osaka J. Math. 37 (2000).
[7] K. Sekiguchi: Extensions and the irreducibilities of induced characters of some 2-groups, Hokkaido Math. J. 31 (2002).
[8] K. Sekiguchi: Extensions and the irreducibilities of the induced characters of cyclic p-groups, Hiroshima Math. J. 32 (2002).
[9] K. Sekiguchi: Extensions and the induced characters of cyclic p-groups, Preprint.
[10] H. Zassenhaus: "The theory of groups", Chelsea, New York, 1949.

[^0]: * Department of Civil Engineering Faculty of Engineering

