On the extensions of the cyclic *p*-groups

Katsusuke SEKIGUCHI

Abstract: Let ϕ be a faithful irreducible character of the cyclic group C_n of order p^n , where p is an odd prime. We study the *p*-group *G* containing C_n such that the induced character ϕ^G is also irreducible. The purpose of this paper is to study the subgroup $N_G(N_G(N_G(C_n)))$ of *G*.

Keywords: p-group, extension, irreducible induced character, faithful irreducible character

1. Introduction

Let G be a finite group. We denote by Irr(G) the set of complex irreducible characters of G and by FIrr(G) (\subset Irr(G)) the set of faithful irreducible characters of G.

Let p be a prime. For a non-negative integer n, we denote by C_n the cyclic group of order p^n . Further, we denote by Q_n , D_n and SD_n the generalized quaternion group, the dihedral group of order 2^{n+1} $(n \ge 2)$ and the semidihedral group of order 2^{n+1} $(n \ge 3)$, respectively.

When G is a p-group, for any $\chi \in Irr(G)$, there exists a subgroup H of G and a linear character ϕ of H such that $\phi^G = \chi$. If we set $N = \text{Ker } \phi$, then $N \triangleleft H$ and ϕ is a faithful irreducible character of $H/N \cong C_n$, for some non-negative integer n. In this paper, we will consider the case when N= 1, that is, ϕ is a faithful linear character of $H \cong C_n$.

We consider the following:

Problem A. Let *p* be an odd prime, and ϕ be a faithful irreducible character of C_n . Determine the *p*-group *G* such that $C_n \subset G$ and the induced character ϕ^G is also irreducible.

Since all the faithful irreducible characters of C_n are algebraically conjugate to each other, the irreducibility of ϕ^G ($\phi \in FIrr(C_n)$) is independent of the choice of ϕ , and depends only on n.

This problem has been solved in each of the following cases:

- (1) $C_n \triangleleft G$ ([2]),
- (2) G has a subgroup H containing C_n such that $C_n \triangleleft H$ and [G: H] = p ([5]).

See also [8] and [9].

On the other hand, when p=2, Yamada and Iida [3] considered the following:

Problem B. Let ϕ be a faithful irreducible character of H, where $H = Q_n$ or D_n or SD_n . Determine the 2-group G such that $H \subset G$ and the induced character ϕ^G is also irreducible.

Yamada and Iida [3] solved Problem B in the case when [G; H] = 2 or 4 and we have solved it when [G; H] = 8 ([6]) for all $H = Q_n$ or D_n or SD_n .

Moreover, we have recently solved Problem B completely ([7]). In [7], we showed that

 $G = N_G(H)$ or $N_G(N_G(H))$,

for all $H = Q_n$ or D_n or SD_n , if G satisfies the conditions of Problem B. Here, as usual, $N_G(H)$ and $N_G(N_G(H))$ are the normalizers of H and $N_G(H)$ in G, respectively. This means that, if we define subgroups of G by

 $M_1 = N_G(H)$, and $M_{i+1} = N_G(M_i)$, for $i \ge 1$, then

 $H \subseteq M_1 \subseteq M_2 = M_3 = M_4 = \cdots = G,$

for all $H = Q_n$ or D_n or SD_n .

In this paper, we consider Problem A. We also define subgroups of G by

 $N_1 = N_G(C_n)$, and $N_{i+1} = N_G(N_i)$, for $i \ge 1$.

The purpose of this paper is to study the group $N_3 = N_G$ $(N_G(N_G(C_n))).$

Throughout this paper, Z and N denote the set of rational integers and the natural numbers, respectively.

2. Statements of the results

For the rest of this paper, we assume that p is an odd prime.

First, we introduce the following groups:

- (i) $G(n, m) = \langle a, b_m \rangle$ with $a^{p^n} = b_m^{p^m} = 1, \ b_m a b_m^{-1} = a^{1+p^{n-m}}, \ (m \le n-1).$
- (ii) $G(n, m, t) = \langle a, b_m, v_l \rangle (\triangleright G(n, m) = \langle a, b_m \rangle)$ with $a^{p^n} = b_m^{p^m} = 1, b_m a b_m^{-1} = a^{1+p^{n-m}},$ $v_t a v_t^{-1} = a^{1+p^{n-m-t}} b_m^{p^{m-t}},$ $v_t^{p^t} = b_m, v_t b_m v_t^{-1} = b_m$ ($4m \le n, 1 \le t \le m$).

(iii)
$$G(n, 1, 1, 1) = \langle a, b_1, v_1, x \rangle (\triangleright G(n, 1, 1))$$

 $= \langle a, b_1, v_1 \rangle$) with
 $a^{p^n} = b_1^p = 1, b_1 a b_1^{-1} = a^{1+p^{n-1}}, v_1 a v_1^{-1} = a^{1+p^{n-2}} b_1,$
 $v_1^p = b_1, v_1 b_1 v_1^{-1} = b_1, xax^{-1} = a^{1+p^{n-3}} v_1, x^p = v_1,$
 $xv_1 x^{-1} = v_1, xb_1 x^{-1} = b_1, (7 \le n).$

We can see that G(n, m, t) (resp. G(n, 1, 1, 1)) is an extension group of G(n, m) (resp. G(n, 1, 1)) by using Proposition 1 below:

Proposition 1. Let N be a finite group such that $G \triangleright N$

^{*} Department of Civil Engineering Faculty of Engineering

and $G/N = \langle uN \rangle$ is a cyclic group of order m. Then $u^m = c \in N$. If we put $\sigma(x) = uxu^{-1}$, $x \in N$, then $\sigma \in Aut(N)$ and (i) $\sigma^m(x) = cxc^{-1}$, $(x \in N)$ (ii) $\sigma(c) = c$.

Conversely, if $\sigma \in Aut(N)$ and $c \in N$ satisfy (i) and (ii), then there exists one and only one extension group G of N such that $G/N = \langle uN \rangle$ is a cyclic group of order m and $\sigma(x) = vxv^{-1}$ ($x \in N$) and $v^m = c$.

Proof. For instance, see [10, III, §7].

We now state the known results concerning Problem A. **Theorem 0.1 (Iida [2]).** Let G be a p-group which contains C_n as a normal subgroup of index p^m . Let $\phi \in$ FIrr(C_n). Suppose that $\phi^G \in$ Irr(G). Then $m \leq n-1$, and G $\cong G(n, m)$.

Corollary 0.2. Let G be a p-group which contains C_n . Let $\phi \in \operatorname{FIrr}(C_n)$. Suppose that $\phi^G \in \operatorname{Irr}(G)$. Then $N_1 \cong G(n, m)$.

Theorem 0.3 ([5]). Let G be a p-group which contains C_n , and let $\phi \in \text{FIrr}(C_n)$. Suppose that $[G: C_n] = p^{m+1}$, $\phi^G \in \text{Irr}(G)$, and $n-3 \ge 2m$. Further, suppose that there exists a subgroup H of G such that $H \triangleright C_n$ and [G: H] = p. Then

- (1) $G \cong G(n, m+1)$ if C_n is a normal subgroup of G.
- (2) $G \cong G(n, m, 1)$ if C_n is not a normal subgroup of G.

Theorem 0.4 ([8]). Let p be an odd prime. Let G be a p-group which contains $C_n = \langle a \rangle$. We assume that $[G: C_n] \ge p^3$. Define the subgroups of G by

 $N_1 = N_G(C_n)$, and $N_{i+1} = N_G(N_i)$, for i = 1, 2.

Let $\phi \in FIrr(C_n)$ and $7 \leq n$. Suppose that $\phi^G \in Irr(G)$, and $[N_1: C_n] = p$. Then

(1) $N_2/N_1 \cong C_1$ and $N_2 \cong G(n, 1, 1)$,

(2) $N_3/N_2 \cong C_1$ and $N_3 \cong G(n, 1, 1, 1)$.

Recently, we have determined the subgroup $N_2 = N_G(N_G(C_n))$.

Theorem 0.5 ([9]). Let p be an odd prime. Let G be a p-group which contains $C_n = \langle a \rangle$. Suppose that $\phi^G \in \operatorname{Irr}(G)$ for any $\phi \in \operatorname{FIrr}(C_n)$. Suppose further that $4m \leq n$, where $[N_1: C_n] = p^m$. Then

- (1) $N_2 = N_G(N_G(C_n)) \cong G(n, m, t), \text{ if } [G: N_1]$ = $p^t \le p^{m-1}.$
- (2) $N_2 = N_G(N_G(C_n)) \cong G(n, m, m), \text{ if } [G: N_1] \ge p^m.$

REMARK 1. Conversely, it is easy to see that the groups G(n, 1, 1) and G(n, 1, 1, 1) satisfy the condition (EX, C), which is defined in section 3 of this paper. Hence these groups satisfy the conditions of Problem A.

Our main theorem is the following:

Theorem. Let *p* be an odd prime. Let *G* be a *p*-group which contains $C_n = \langle a \rangle$. Suppose that $\phi^G \in Irr(G)$ for any

 $\phi \in \operatorname{FIrr}(C_n)$. Suppose further that $6m \leq n$, where $[N_1: C_n] = p^m$. Then

(1) $N_3/N_2 = N_G(N_2)/N_2 \cong C_r$ for some $r \in \mathbf{N}$, $r \le m$.

(2) Suppose that $N_2 = \langle a, b, v \rangle$, then there exists $g \in N_3$ such that $N_3 = \langle a, b, v, g \rangle$, and g satisfies the following relations:

$$gag^{-1} = a^{1+kp^{n-2m-r}}v^{p^{m-r}}, gvg^{-1} = v,$$

for some $k \in \mathbb{Z}, (k, p) = 1.$

For the rest of this section, we state some results concerning the criterion of the irreducibilities of induced characters and others, which we need in section 3.

We denote by $\zeta = \zeta_{p^n}$ a primitive p^n th root of unity. It is known that, for $C_n = \langle a \rangle$, there are p^n irreducible characters ϕ_v ($1 \le v \le p^n$) of C_n :

 $\phi_{\nu}(a^i) = \zeta^{\nu i}, \quad (1 \leq i \leq p^n).$

The irreducible character ϕ_v is faithful if and only if (v, p) = 1.

We will need the following result of Shoda (cf [1, p. 329]):

Proposition 2. Let G be a group and H be a subgroup of G. Let ϕ be a linear character of H. Then the induced character ϕ^G of G is irreducible if and only if, for each $x \in$ $G-H=\{g \in G | g \notin H\}$, there exists $h \in xHx^{-1} \cap H$ such that $\phi(h) \neq \phi(x^{-1}hx)$. (Note that, when ϕ is faithful, the condition $\phi(h) \neq \phi(x^{-1}hx)$ holds if and only if $h \neq x^{-1}hx$).

Using this result, we have the following:

Proposition 3. Let $\langle a \rangle = C_n \subset G$, and ϕ be a faithful irreducible character of C_n . Then the following conditions are equivalent:

- (1) ϕ^G is irreducible,
- (2) For each $x \in G C_n$, there exists $y \in \langle a \rangle \cap x \langle a \rangle x^{-1}$ such that $x^{-1}yx \neq y$.

DEFINITION. When the condition (2) of Proposition 3 holds, we say that G satisfies (EX, C).

Let H be a group. For a normal subgroup N of H, and any g, $h \in H$, we write

 $g \equiv h \pmod{N}$,

when $g^{-1}h \in N$. For an element $g \in H$, we denote by |g| the order of g.

3. Proof of Theorem

Let $N_1 = N_G(C_n)$, $N_2 = N_G(N_1)$, and $N_3 = N_G(N_2)$. Then, by [2], we an take an element $b_m \in N_1 - C_n = \{g \in N_1 | g \notin C_n\}$ such that

 $N_1 = \langle a, b_m | a^{p^n} = b_m^{p^m} = 1, b_m a b_m^{-1} = a^{1+p^{n^-m}} \rangle \cong G(n, m).$

Hereafter, we use the notation b instead of b_m . These elements a and b satisfy the following

Lemma 1 ([9]) Suppose that $n \ge 2m$, then the following equalities hold for any i, j, $k \in \mathbb{Z}$ and $x \in \mathbb{N}$.

(i) $ab^{p^{m-t}} \equiv b^{p^{m-t}}a \pmod{\langle a^{p^{n-t}} \rangle}$. $(0 \le t \le m)$. (ii) $ba^{p^m}b^{-1} = a^{p^m}$. (iii) $b^{j}a^{i}b^{-j} = a^{i(1+jp^{n-m})}$.

(iv)
$$(a^i b^j)^x = a^{ix+ijp^{n-m}(x(x-1)/2)} b^{xj}$$

(v)
$$(a^{i}b^{jp^{m-i}})^{p^{i}} = a^{ip^{i}} \quad (0 \le t \le m).$$

(vi)
$$(a^i b^{jp^{m-i}})^{1+kp^i} = a^{i(1+kp^i)} b^{jp^{m-i}} \quad (0 \le t \le m).$$

On the other hand, by [9], we can take $d \in \mathbb{Z}$, and $v_m \in N_2 - N_1 = \{g \in N_2 | g \notin N_1\}$ such that (d, p) = 1 and $a_1 = a^d$, b and v_m generate N_2 . Moreover, $N_2 \cong G(n, m, m)$. That is,

 $N_2 = \langle a_1, b, v_m \rangle \cong G(n, m, m),$ with

 $a_1^{p^n} = b^{p^m} = 1, \quad ba_1 b^{-1} = a_1^{1+p^{n-m}}, \\ v_m a v_m^{-1} = a_1^{1+p^{n-2m}} b, \quad v_m^{p^m} = b, \quad v_m b v_m^{-1} = b.$

Hereafter, we use the notation a (resp. v) instead of a_1 (resp. v_m).

Concerning to these elements a, b, v we can prove the following

Lemma 2 ([9]) Suppose that $n \ge 4m$, then the following equalities hold for any $i, j \in \mathbb{Z}$ and $x \in \mathbb{N}$,

- (i) $va^{p^{2m}}v^{-1}=a^{p^{2m}}$.
- (ii) $v^{j}av^{j} = a^{1+jp^{n-2m}}b^{j}$.
- (iii) $(a^i v^j)^x \equiv a^{ix+ijp^{n-2m}(x(x-1)/2)} b^{ij(x(x-1)/2)} v^{xj} \pmod{\langle a^{p^{n-m}} \rangle}.$
- (iv) $(a^i v^j)^{p^m} \equiv a^{ip^m} b^j \pmod{\langle a^{p^{n-m}} \rangle}$.
- $(\mathbf{v}) \quad (a^i v^j)^{p^{2m}} \equiv a^{i p^{2m}}$

Let $f: N_3 \rightarrow N_3/N_2$ be a natural epimorphism of groups. For $g \in N_3$, we write o(g) for the order of f(g) in N_3/N_2 .

Define $p^{r_0} = max\{o(g) | g \in N_3\}$, and take an element $g_0 \in N_3$ such that $o(g_0) = p^{r_0}$. Hereafter we fix the element g_0 . Then we can show the following:

Claim I. (i) $r_0 \leq m$.

(ii) For any $g \in N_3$, there exist integers s_1 , k_1 , j_1 , satisfying $(k_1, p) = (j_1, p) = 1$, such that the following equalities hold:

 $(a^{s_1}g)a(a^{s_1}g)^{-1} = a^{1+k_1p^{n-2m-r}}v^{p^{m-r}j_1},$

 $(a^{s_1}g)v(a^{s_1}g)^{-1}=v,$

where $o(g) = p^r$.

Proof of Claim I. (i). Take an element $g \in N_3$. and let $o(g) = p^r$. We will show that $r \le m$.

By the same way as in the proof of [9], we can find $s_1 \in \mathbb{Z}$ such that $(a^{s_i}g)v(a^{s_i}g)^{-1} = v$. Set $g_1 = a^{s_i}g$, and write $g_1ag_1^{-1} = a^i v^j$.

Since $g_1 a^{p^{2m}} g_1^{-1} = (a^i v^j)^{p^{2m}} = a^{ip^{2m}}$, by Lemma 2 (v), we must have (p, i) = 1.

Define the abelian subgroup M of G by

 $M = \langle a^{p^{n-2m}} \rangle \times \langle b \rangle.$

It is easy to see that N_2/M is the abelian group. Further, since $6m \le n$, by our assumption, we have $g_1 a^{p^{n-2m}} g_1^{-1} = a^{ip^{n-2m}}$. So, we can see that $g_1 M g_1^{-1} = M$.

Since N_2/M is the abelian group, we have $va \equiv av \pmod{M}$. Using this relation repeatedly, we have

 $g_1^l a g_1^{-l} \equiv a^{i'} v^{j(i^{l-1}+\cdots+i+1)} \pmod{M},$

for any $l \in \mathbf{N}$.

In particular,

 $g_1^{p'}ag_1^{-p'} \equiv a^{ip'}v^{j(ip'-1+\cdots+i+1)} \pmod{M}.$

But $g_1^{p'} \in N_2$ and N_2/M is the abelian group, so,

$$g_1^{p'} a g_1^{-p'} \equiv a \pmod{M}.$$

Therefore we must have
 $i^{p'} \equiv 1 \pmod{p^{n-2m}},$

and

$$j(i^{p^{r-1}}+\cdot+i+1)=j\left(\begin{array}{c}i^{p^{r}}-1\\i-1\end{array}\right)\equiv 0\pmod{p^{m}}.$$
 (2)

By (1), we can write as $i=1+i_1p^t$, for some $i_1 \in \mathbb{Z}$ and $t \in \mathbb{N}$.

So,

$$j(i^{p^{r-1}} + \cdot + i + 1) = j\left(\frac{i^{p^{r}} - 1}{i - 1}\right) \equiv jp^{r}w,$$
(3)

for some integer w, (p, w) = 1. Suppose that $r \ge m + 1$, then

 $j(i^{p'-1} + \cdot + i + 1) \equiv 0 \pmod{p^m}.$

This means that $g_1^{p^{r-1}} a g_1^{-p^{r-1}} \in M$ and $g_1^{p^{r-1}} \in N_2$, which contradicts our hypothesis that $o(g_1) = p^r$. Thus the proof of Claim I (i) is completed.

(ii). By (1) and (3), we can write as $i=1+k_1p^{n-2m-r}$, and $j=p^{m-r}j_1$ for some integers k_1 and j_1 . We have

$$g_1 a g_1^{-1} = a^{1 + k_1 p^{n-2m-r}} v^{p^{m-rj_1}},$$
(4)

and

 $g_1 v g_1^{-1} = v$. Suppose that $(p, j_1) = p$, then by the equality

$$j(i^{p^{r-1}-1}+\cdot+i+1)=j\left(\frac{i^{p^{r-1}}-1}{i-1}\right)=jp^{r-1}w_1,$$
 (6)

we can see that $g_1^{p^{r-1}} \in N_2$, which contradicts the hypothesis that $o(g_1) = p^r$. So, we must have $(p, j_1) = 1$.

Suppose that $(p, k_1) = p$. Write as $k_1 = k_2 p$, for some $k_2 \in \mathbb{Z}$. Since $n \ge 6m$, we have

 $g_1 a^{p^{n-2m-r}} g_1^{-1} = a^{p^{n-2m-r}}.$

Therefore
$$g_1^l a g_1^{-1} = a^{1 + lk_1 p^{n-2m-r}} v^{p^{m-rj_1 l}},$$

for any
$$l \in \mathbf{N}$$
.

In particular

$$g_1^{p^{r-1}}ag_1^{-p^{r-1}} = a^{1+k_1p^{n-2m-1}}v^{j_1p^{m-1}} = a^{1+k_2p^{n-2m}}v^{j_1p^{m-1}}.$$

And

$$g_1^{p^{r-1}}a^{p^{m+1}}g_1^{-p^{r-1}} = a^{p^{m+1}(1+k_1p^{n-2m-1})} = a^{p^{m+1}(1+k_2p^{n-2m})}.$$

So, we can see that

$$g_1^{p^{r-1}}\langle a\rangle g_1^{-p^{r-1}}\cap\langle a\rangle = \langle a^{p^{m+1}}\rangle$$

On the other hand, since

 $vav^{-1} = a^{1+p^{n-2m}}b,$

we have

 $va^{p^{m+1}}v^{-1} = a^{p^{m+1}(1+p^{n-2m})}.$

So,
$$v^{-k_2}(q_1^{p^{r-1}}a^{p^{m+1}}q_1^{-p^{r-1}})v^{k_2} = v^{-k_2}(a^{p^{m+1}(1+k_2p^{n-2m})})v^{k_2} = a^{p^{m+1}}$$

which contradicts our hypothesis that G satisfies (EX, C). Thus we must have $(k_1, p) = 1$. and we have completed the proof of (ii).

Claim II. N_3 is generated by a, b, v and g_0 .

 $N_3 = \langle a, b, v, g_0 \rangle.$

Proof of Claim II. Take an arbitrary element $h \in N_3$. Let $o(h) = p^{t_1}$. Then we can find $x_1 \in \mathbb{Z}$, such that $h_1 = a^{x_1}h$ satisfies the following equalities:

$$h_1ah_1^{-1} = a^{1+d_1p^{n-2m-t_1}}v^{d_2p^{m-t_1}},$$

and

 $h_1 v h_1^{-1} = v$, where $(p, d_1) = (p, d_2) = 1$. Since $t_1 \le r_0$, we can take an ele-

(1)

(5)

ment $u \in \langle a, b, v, g_{0}^{p_{0}-r_{1}} \rangle$ such that $u^{-1}au = a^{1+e_{1}p^{n-2m-r_{1}}}v^{e_{2}p^{m-r_{1}}}$, and $u^{-1}vu = v$, where $(p, e_{1}) = (p, e_{2}) = 1$. Let y be the integer satisfying $e_{2}y \equiv -d_{2} \pmod{p^{m+r_{1}}}$, and set $u_{1} = u^{y}$. Then $u_{1}^{-1}au_{1} = a^{1+e_{1}yp^{n-2m-r_{1}}}v^{e_{2}yp^{m-r_{1}}} = a^{1+e_{1}yp^{n-2m-r_{1}}}v^{-d_{2}p^{m-r_{1}}}$, and $u_{1}^{-1}vu_{1} = v$. Therefore we have $u_{1}^{-1}(h_{1}ah_{1}^{-1})u_{1} = u_{1}^{-1}(a^{1+d_{1}p^{n-2m-r_{1}}}v^{d_{2}p^{m-r_{1}}})u_{1}$

$$=a^{1+(e_{1}y+d_{1})p^{n-2m-t_{1}}} \in \langle a \rangle.$$

This means that $u_1^{-1}h_1 \in N_G(C_n) = N_1$, so we have $h_1 \in \langle a, b, v, g_0 \rangle$. This complete the proof of Claim II. Finally, we show the rest of the proof of the theorem.

Let

$$g_0 a g_0^{-1} = a^{1 + k_0 p^{n-2m-r_0}} v^{p^{m-r_0 j_0}},$$

and

$$g_0 v g_0 = v,$$

where $(p, k_0) = (p, j_0) = 1$. Since $(j_0, p) = 1$, we can find the integer *c* such that

 $j_0 c \equiv 1 \pmod{p^{m+r_0}}.$

Then, if we put $g_1 = g_0^c$, we get

 $g_1 a g_1^{-l} = a^{1 + ck_0 p^{n-2m-r_0}} v^{p^{m-r_0} cj_0} = a^{1 + ck_0 p^{n-2m-r_0}} v^{p^{m-r_0}},$ and

 $g_1 v g_1^{-1} = v.$

Thus the proof of the theorem is completed.

References

- C. Curtis and I. Reiner: "Representation theory of finite groups and associative algebras", Interscience, New York, 1962.
- [2] Y. Iida: Normal extensions of a cyclic p-group, Comm. Algebra 30 (2002), no. 4, 1801–1805.
- [3] Y. Iida and T. Yamada: *Extensions and induced characters of quaternion, dihedral and semidihedral groups*, SUT J. Math. 27 (1991), 237–262.
- [4] Y. Iida and T. Yamada: Types of faithful metacyclic 2groups, SUT J. Math. 28 (1992), 23-46.
- [5] K. Sekiguchi: Irreducibilities of the induced characters of cyclic p-groups, Math. J. of Okayama Univ. 41 (1999).
- [6] K. Sekiguchi: Extensions of some 2-groups which preserve the irreducibilities of induced characters, Osaka J. Math. 37 (2000).
- [7] K. Sekiguchi: *Extensions and the irreducibilities of induced characters of some 2-groups*, Hokkaido Math. J. 31 (2002).
- [8] K. Sekiguchi: Extensions and the irreducibilities of the induced characters of cyclic p-groups, Hiroshima Math. J. 32 (2002).
- [9] K. Sekiguchi: *Extensions and the induced characters of cyclic p-groups*, Preprint.
- [10] H. Zassenhaus: "The theory of groups", Chelsea, New York, 1949.