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Linear canonical transformations and transformation
functions of the squeeze operator

Akihiro Ogura™, Motoo Sekiguchi™*

Abstract: We investigate the transformation functions of a general time-dependent linear transforma-
tion in coordinate-momentum phase space using the “Integration Within Ordered Product” (IWOP)
technique. These transformation functions comprise a classical generating function which engenders a
linear canonical transformation in coordinate-momentum phase space. This reveals a new correspondence

between classical and quantum mechanics.
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I. INTRODUCTION

There has been considerable interest in the mapping of
linear canonical transformations in coordinate-momentum
phase space to unitary operators" using the “Integration
Within Ordered Product” (IWOP) technique®. The
attractive point for these unitary operators is that they are
represented by normally ordered forms of the squeeze

%% Since squeeze operators form the SU (1, 1)

operator
Lie algebra, there is both a conceptual and computational
advantage for this form of unitary operator. As a
consequence, the Feynman propagator for linear
transformations in coordinate-momentum phase space is
easily derived® using this unitary operator. In addition, we
realized in the course of the calculation that the Feynman
propagator is written in the form of the expo-nential of the
classical generating function which engenders the linear
canonical transformations in coordinate-momentum phase
space. This indicates a new correspondence between classical
and quantum mechanics.

In classical mechanics, it is well known® that there are
four types of generating function which generate the same
canonical transformations. The difference between the four
is the choice of canonical variable used to form the
generating function. The question arises as to what prop-
agators are appropriate for quantum mechanics that
corresponding to the situation in classical mechanics? The

purpose of this paper is to show that the four types of
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transformation func-tion which correspond to the four types
of generating function are derived from the same unitary
operator, which is the normally ordered form of the squeeze
operator.

In the next section, we first review the canonical
transformations which cause the linear canonical
transformations in coordinate-momentum phase space. We
show four types of generating function. In section I, we
derive the four types of transformation function
corresponding to the four types of generating function from
the same unitary operator which is the normally ordered
form of the squeeze operator. Section [Vis devoted to a

discussion.
II. LINEAR CANONICAL TRANSFORMATIONS

Linear canonical transformations in coordinate-momentum

phase space with time-dependent coefficients are defined by
Q(t) = Alt)g + B(t)p, (1a)
P(t) = C(t)q + D(t)p, (1b)

where (g, p) are the old canonical variables which describes
the position and momentum at intial time and (Q, P) are the
new canonical variables which describes the position and
momentum at later time. The coefficients 4 (¢), B(z), C(¢)
and D(¢) designate the linear canonical transformations and
the real functions of time 7. In order for these transformations
to be canonical, the coefficients 4(¢), B(¢), C(¢) and D ()
are constrained by the Poisson bracket,
aQ(t) ap(t)  IP(t) 9Q(t)

dq Op g dp (2)
A(H)D(t) — B(HC(t) = 1.

Q). P(1)].

I
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Table 1. Generating functions which engender linear canonical transformations (1).
Q P
¢ A(t) 2 D(t) g o qP cit) 2, B(t) p
g | W= TET% IO 2!3(:}Q2 W, = Tjﬁ - 2!)(r)'?2 + 2!)[!J‘P2
o B(t) 2 CH) 2 | vy _ _ pP D) 2, Alt) p2
pl|Ws= _":._{% + zamP” ~ @ | Wa= _'c;“ﬁ +wm? tem!
These linear canonical transformations (1) in coordinate- . alal .oata 1 p aa
I 9)

momentum phase space are derived from the type-1

generating function W, (q, O, t) as

_aQ  Al) . D(t)
H”l{‘f\Qf"’}_ B(f) QB(t)q QB(t)Q 1 (3)
with the ordinary prescription:
oW, o,
p= a_qa == 9Q (4)

It is well known in classical mechanics® that since the
generating function can be written as a function of one old
and one new canonical variable, there are four types of
generating function which generate the same canonical
transformation (1). A list of other types of generating
function is provided in Table 1. These four generating
functions are related to each other by a Legendre
transformation.

Corresponding to generating functions of type-2, 3 and 4,

the derivatives of them are established:

oW, oW,

Walq,P.t) for p R Q="7p" (5)
) o oW

Wi(p,Q,t) for g= rr ="%0" (6)
. o awy oW,

Wi(p, P,t) for ¢= o Q=75 (7)

which result in linear canonical transformations (1).

. SQUEEZE OPERATOR AND
TRANSFORMATION FUNCTIONS

In this section, we shall derive the transformation functions.
From now on, to distinguish the c-number variables, we
attach " for the g-number variables. The unitary operator
U(?) which causes a linear transformation in coordinate-
momentum phase space is written as the normally ordered

form of the squeeze operator ">

U(t) = exp [—@Kﬁ_} exp [—QRU In s(f.)]

s(t)

(1) ..
D) "“} :

(®)

X exp

where K = and K, are defined in terms of the annihilation 4

= (¢ +ip)+/2 and creation a (g — ip) /2 operators as,

These operators form the SU (1, 1) Lie algebra,

= —2Ko, (10)

[k K] = [Ko, i | = R,
where [A4, B]=AB—BA is a commutator between two
operators. Transforming the annihilation and creation
operators with (8) such as UT()aU(¢) and Ut(1)a™U(z) we
obtain the linear transformation in coordinate-momentum

phase space

Qt) = UT(1)gU(t) = A(t)g + B(t)p (11a)
P(t) = U'(t)pU(t) = C(t)§ + D(t)p (11b)
with
A(t) B(t) _ N+x’;r—r' —is-:—i.u'z-.'—ir—ir" a2
C(t) D(t) is—is”® T:-ir—ir' s4s* -’I-r—-r"

Now, we calculate the four types of transformation
function: < Q|U() g >, <PlU®)|g><0lUW) |p> <PlU
(t)|p >. The coherent state |z > is defined by the eigenstate
of the annihilation operator ¢ with the complex eigenvalue

z, 1.e.,

ilz »>= z|z >,

(13)

and forms the completeness relation

[z

21 oc o= [(URCImGY oy (14)
We insert the identity operator (14) into the transformation

2mi 2mi

function

d?z1d? 2o

(2ri)?

< Q|21 >< 21|U(t)]z2 >< 22]g >.

(15)

< QU (g >= ]

With the aid of the coherent-state representation of the

unitary operator U(r) with arguments z; and z,

-~ 1 z*
< 2|U()|z2 >= —=exp | — o (2])? + 221
Vs 2s
. 2 2 (16)
L(,. }2 _ |21 _ |22
257 2 2 |

and the coordinate and momentum representation of the

coherent state
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Table 2. Transformation functions of the squeeze operator (8).

Q P
q | <Q|Ulg >= ‘,fz,”h,m exp [—iW1], | < P|U|g >= N 210 exp [—iWa)

=

F

< Q|U|p >= ‘xm exp [—iW3]

< P|Ulp >= v = UJ exp [—iWy)

2 2
q 2 |z
<q|z>— exp[—5+\/_zq—E—T], (17)
1 A T
<plz>=—— v (,xp{ 3_‘ Zzp-}-E—T . (18)
we integrate to obtain®
1
<QIU(t)lg >= 2wB(<ﬂﬂfHd%Q”] (19)

where Wi (g, O, t) is (3). We show an alternative derivation
for < 0| U(#)| ¢ >, in the Appendix. The other transformation

functions are derived in the same manner.

. 1 —2igP
< PlU(t)|qg >= exp &l
w(s+s* +r+r) s+s +r+r*

@ —s+s —r+r* P_s4s4r—1*
2 s+ +r+7r* 2 s4s +r+r

‘{2 ;J{t exp [—-iWa(q, P,t)],
2ipQQ

1
exy
m(s+ 8" —r—71%) s+s8 —r—r*

(20)

(21)

<QIU(t)lp >=

pPP—s+s +r—r* QP —s+s—r+4r
2 s+8—r—1r* 2

=\l 52w /],‘U exp [—iWs(p, Q,1)],

. -1 —2pP
< PlU(t)|p >=
| ( )L‘D Jﬂ'(—b‘-’rvﬁ'* _?.+?.,} ex

S+ §* —1 —p*

(22)

(23)

p|:—.s+s*—r+'r‘

p? s+s +r+rt

»’ P_Zs-i-s*—?‘—?'*
Py st s—rrr T2 sts—rtr )
(24)
__1 xp [—iW. P, 1)) (25)
Q‘a‘riC(a’.) exp [—iWi(p, P, t)],

where W,, W5 and W, are the generating functions which
appear in Table 1. Corresponding to Table 1, we list all four
transformation functions in Table 2. It is clear that these four
functions are the exponentials of the generating functions

which appear in Table 1. This result demonstrates a new

correspondence between classical and quantum mechanics.

Whereas the generating functions in Table 1 are related
by Legendre transformations, the transformation functions
in Table 2 are related by Fourier transformations. For
example, we shall derive the type-2 transformation function
via type-1 transformation functions by

<me>=]£Q<Pp>4Qmm>, (26)
with
< PlQ >= \/;re—u’q_ (27)

and the remaining task is a gaussian integration in terms of

0.
IV. DISCUSSION

We have obtained the transformation functions corresponding
to linear canonical transformations in coordinate-momentum
phase space. It was found that the transformation functions
are expo-nentials of the generating functions. Originally,
Dirac first discussed using the exponential of the classical
In that
publication, Dirac used the type-2 transformation function

generating function as a transformation function”.

(21). Later, he changed the canonical variable and discussed
the type-1 transformation function (19)*?. These papers
were cited by Feynman'® in deriving his path integral form
of quantum mechanics. However, these four types of
transformation func-tion stand on equal footing as they are
all derived from the same unitary operator (8) and are

transformed by Fourier transformations.
Appendix

We define the eigenstate |Q; ¢ > of the operator O (z) with

eigenvalue Q to form the Q-representation:

(1)|Q;t >=Q|Q:t > .

By using (11a), the g-representation for the eigenstate |Q; >

(A1)

can be obtained from the differential equation

<qOMIQit > = {Awq - :iB(t)a%} <qQit>

=Q <q|Q;t>. (A2)
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Integrating (A.2) with the normalization condition

<Qt|Qt>=46(Q — Q'), (A.3)
we obtain
1
<q|Q;t >=P(Q,t) x (i) B(t)
(A.4)
.2qQ — A(t)q*
ol

where ®(Q, ¢) is an arbitrary phase factor which depends on
O and time ¢. Here, the meaning of (—i) in the square root is
clarified later. We consider the matrix element of the
operator P(¢) (11b) with an arbitrary state | ¥ >,

< Q;t|P()|¥ > = /dq < Q;tlg >< q|P(t)|¥ >,
(A.5)

= /dq < Q;tlg > {O(t)q i ED(t)(%} <q|¥>.
(A.6)

Integrating by parts and using the g-derivative of (A.4), we

obtain
A D(t e L
< Qit|P(t)| ¥ >= {%Q ~igg+ é@}
< Qit|v >
(A7)
If we set

P7(Q,t) = exp {iz?a((?) Qg} , (A.8)

<Q;t|P(1)| ¥ > is given by

< Q;t|P()|¥ >= —i% < Q;t|¥ >, (A.9)
so that the g-representation of the eigenstate |Q; ¢ > turns
out to be

e -1 [ [eQ  AQ) , D(t)

<alQit>= 5B O HW “a0)? 3B)© H

(A.10)

Since |Q; t > is defined by a base ket, the time-dependency
for this ket is defined as |Q; 1 >=U"(r) |Q >. Thus, (A.10)

becomes

< U (®)|Q >= ,/ﬁjw exp[iWi(@,Q.8)], (A1)

which is the same result for (19)
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