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Abstract: We propose a new picture, which we call the moving picture, in quantum mechanics. This 
picture provides the coordinate system which sticks to the particles. The Schrödinger equation in this 
picture is derived and its solution is examined. We also investigate the close relationship between the 
moving picture and the Hamilton-Jacobi theory in classical mechanics. This shows a new correspondence 
between classical and quantum mechanics. We examine the cases of the free particle and the harmonic 
oscillator, as an example of the usefulness of this picture.
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1．Introduction 

Time development plays a fundamental role in quantum 
mechanics. In a general course on quantum mechanics, two 
well-known pictures are studied. One is the Schrödinger 
picture, and the other is the Heisenberg picture. In the 
former, the operators are fixed in time and the states vary 
with time, while in the latter it is vice versa. In both pictures, 
we use only a stationary base. 

In contrast to this, we can also choose a set of base which 
acquires time de-pendency. The time-development of the 
base state is used in the path integral for-mulation of 
quantum mechanics. There, the Feynman propagator K（x, t; 
x0, t0）＝〈x, t |x0, t0〉 is the corner stone and the moving frame 
is defined as |x, t〉＝eiH^t/h– |x〉. In this paper, we will take this 
picture, which we call moving picture, and reformu-late the 
quantum Hamilton formalism from this point of view.

Omote et al. 1） presented a new idea for the correspondence 
between classical and quantum mechanics. They proposed a 
new method for finding the solution to Schrödinger equation 
from a classical canonical transformation for the case in 
which the transformed Hamiltonian becomes zero. Under 
this transformation, they fixed the tranformation of the 
canonical position q → Q（t）and the momentum p → P（t）. 
Next, they made the tranformed position operator Q^（t）in 
the quantum mechanical sense, and the eigenstate |Q, t〉 of 
the operator Q^（t）with eigenvalue Q form the set of base. In 

this representation, the Hamiltonian of the Schrödinger 
equation becomes zero in the same way as for the Hamilton-
Jacobi theory in classical mechanics. Thus, they called their 
formulation the Hamilton-Jacobi picture and also found a 
solution to the Schrödinger equation. However, as we will 
show in this article, this Hamilton-Jacobi picture is nothing 
other than moving picture. In other words, their formulation 
is just a quantum mechanical formulation with respect to the 
moving frame. 

Since the moving picture corresponds to looking at a 
moving body from a body-fixed moving reference frame, 
the transformed Hamiltonian always vanishes. This is a 
similar situation to the Hamilton-Jacobi theory in classical 
mechanics, where the canonical transformation makes the 
Hamiltonian become zero. The quantum Hamilton-Jacobi 
theory has been discussed by some authors2, 3）, but we will 
discuss more clearly the relationship between the moving 
picture in quantum mechanics and the Hamilton-Jacobi 
theory in classical mechanics. 

This article is organized as follows. In section 2, we 
formulate the moving picture and fix our notation. The 
Schrödinger equation and its solution in the moving picture 
are derived in section 3, and some examples are discussed 
in section 4. In section 5, we will deduce the relationship 
between the moving picture and the Hamilton-Jacobi theory 
in classical mechanics. Section 6 is devoted to a discussion. 

2．Moving Picture 

Time development in quantum mechanics is governed by 
the Hamiltonian H^（t）for the system with the Schrödinger 
equation for the time-evolution operator T^（t）, 
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 （1）

Here, t0 is the initial time for the system and hereafter, for 
simplicity, t0＝0. The symbol ^ is attached on the operator in 
quantum mechanics. 

When the solution to eq.（1） is found, we define the 
unitary transformation of the position q^  and the momentum 
p^  operators as

 （2）

where the evolution of time is in the opposite direction to 
the Heisenberg operator. We note that since the right hand 
side is a function of position q^ , momentum p^  and time t, the 
physical meaning of the left hand side, Q^（t） and P^（t）, are 
not known at this point. It is easy to see that the transformed 
position and momentum operators have the commutation 
relation 

 （3）

if［q^ , p^ ］＝ih– is satisfied. This is closely related to classical 
mechanics, where the Poisson bracket is kept to 1 before 
and after the canonical transformation. 

Now we will make a complete set of base. We take the 
eigenstate | Q ; t〉 of the operator Q^（t） with eigenvalue Q to 
form the Q-representation:

 （4）

From the commutation relation eq.（3）, the following 
relationship 

 （5）

is satisfied. According to the transformation eq.（2）, the 
time evolution of the base is defined by 

 （6）

The q-representation of the eigenstate |Q ; t〉 is calculated 
from eq.（4）

 （7）

Since the transformed position operator Q^（t） is a function 
of q^ , p^  and t, this equation becomes the differential equation. 
With eq.（5） and the normalized condition

 （8）

we solve the differential equation （7） and get the 
q-representation of the eigenstate |Q ; t〉

 （9）

This function will be used as the transformation function. 

We also note here that from eq.（6） this function can be 
written by

 （10）

which is the Feynman propagator from the ”position” | Q〉 
to the position | q〉. This situation will be accomplished by 
some examples in the later section.

3．Schrödinger equation and its solution 

In the previous section, we have defined moving picture. 
Now we are ready to consider the Schrödinger equation in 
this picture. 

3.1　Schrödinger equation 
Let |ψ; t〉S be the state which is a solution of the Schrödinger 
equation

 （11）

where S stands for the Schrödinger picture. We define the 
wave function in the moving picture as 

 （12）

Then, the Schrödinger equation becomes 

 （13）

where the transformed Hamiltonian k^（t） in the moving 
picture is

 （14）

But we notice that as with eq.（1）, the transformed 
Hamiltonian k^（t） is identically zero: k^（t）＝0. This is a similar 
situation to the Hamilton-Jacobi theory in classical mechanics. 
That is why Omote et al. 1） have called this picture the 
Hamilton-Jacobi picture. However, this is nothing other than 
quantum mechanics with respect to the moving picture. It is 
certain that at first they seek a canonical transformation for 
which the Hamiltonian is zero in the region of classical 
mechanics, and then construct the representation for 
quantum mechanics. But it is unnecessary to go back to 
classical mechanics, as easily seen by the above argument.

3.2　Arbitrary state in moving picture 
Since we have the transformation function eq.（9）, the wave 
function for an arbitrary state |ψ〉 in the moving picture is 
easily obtained from 

 （15）

if the q-representation of an arbitrary state 〈q |ψ〉 is known.
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It is worth commenting here that the state in the moving 
picture is independent of time. In fact, if the arbitrary state 
in the Schrödinger picture is written by |ψ ; t〉S, its moving 
picture is 

 （16）

where H stands for the Heisenberg picture. This means that 
the moving repre-sentation for an arbitrary state in the 
Schrödinger picture is equivalent to the Q-representation for 
an arbitrary state in the Heisenberg picture. 

4．Examples 

We are now in a position to apply the moving picture to 
some systems. We take two examples and restrict ourselves 
to cases where the Hamiltonian does not depend on time. In 
this case, the Schrödinger equation for the time-evolution 
operator eq.（1） is easily calculated and we get 

 （17）

However, the discussions in section 2 and 3 are applicable 
to all systems which satisfy the Schrödinger equation for the 
time-evolution operator eq.（1）．

4.1　Free particle 
The Hamiltonian of a free particle is

 （18）

where m and p are the mass and momentum of the particle. 
In this case, the time-evolution operator is 

 （19）

It is easy to calculate the transformation of position and 
momentum, 

 （20）

From a classical mechanical point of view, this canonical 
transformation is repro-duced by the generating function 

 （21）

Furthermore, since this transformation is the Galilean 
transformation, the trans-formed Hamiltonian will vanish, as 
in the Hamilton-Jacobi theory. Also, since the operator Q^  is 
defined as a linear combination of q^  and p^ , this transformation 
is not so simple transformation, like a point transformation. 

Now we make up the set of base for the moving picture. 
From eq.（7） and eq.（20）, we obtain the differential equation

 （22）

Integrating this equation, we have 

 （23）

where （Q）is an arbitrary phase factor. On the other hand, 
the matrix element of an arbitrary state |ψ〉 is

 （24）

　　　　　  （25）

If we take *（Q）＝exp , the matrix element is given 
by 

 （26）

and the transformation function turns out to be 

 （27）

It is of interest that this transfromation function is nothing 
but the Feynman prop-agator from the ”position” |Q〉 to the 
position |q〉.

As an example of an arbitrary state, we take a momentum 
eigenstate |p〉 with eigenvalue p, which satisfies

 （28）

We calculate 

 （29）

　　　　  （30）

4.2　Harmonic Oscillator 
The Hamiltonian of the harmonic oscillator is

 （31）

where m and ω are the mass and frequency of the particle. 
Since this Hamiltonian is independent of time, the time-
evolution operator is given by 

 （32）

In the same manner, it is easy to calculate the transformed 
position and momen-tum, 

 （33）

From the classical mechanical point of view, this 
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transformation is deduced from the generating function

 （34）

Furthermore, since this transformation refers to a rotational 
system in phase space, the transformed Hamiltonian will 
vanish, as with the Hamilton-Jacobi theory. More-over, 
since the operator Q^  is defined as a linear combination of q^  
and p^ , this trans-formation is not so simple transformation, 
like a point transformation. 

Now we construct the set of base for the moving picture. 
From eq.（7） and eq.（33）, we obtain the differential equation

 （35）

Integrating this equation, we have 

 （36）

where （Q） is an arbitrary phase factor. On the other hand, 
the matrix element of an arbitrary state ψ  is

 （37）

　　　　　   
 （38）

If we take *（Q）＝exp , the matrix element is 
given by 

 （39）

and the transformation function turns out to be 

 （40）

It is of interest that this transformation function is nothing 
other than the Feynman propagator from the ”position” |Q〉 
to the position |q〉. 

As an example of an arbitrary state, we take a number 
eigenstate |n〉, which satisfies

 （41）

where the number operator is defined by N^ ＝a^ †a^ . The 
operator a^  is related to the position and the momentum 
operators as a^ ＝

In order to obtain the Q -representation 〈Q ; t | n〉, it is 
easier to proceed as follows rather than via eq.（15）. We first 
calculate 

 （42）

　　　　　  （43）

which can be rewritten as 

 （44）

Further, a straight cast is done to get 

 （45）

　　　　  （46）

thus we have 

 （47）

 （48）

where Hn（ ） is the Hermite polynomial of argument .
The other example is a coherent state a^ | z〉＝z | z〉. The 

Q-representation is 

 （49）

 （50）

5．Principal function and moving picture 

Thus far, we have been discussing quantum mechanics from 
the perspective of the moving picture. In this case, since we 
are looking at the moving body from the body-fixed moving 
reference frame, the transformed Hamiltonian k^（t） always 
vanishes. The situation is similar for the Hamilton-Jacobi 
theory in classical mechanics. In this section, we will study 
the moving picture from a different point of view. We start 
from the Schrödinger equation,

 （51）

Let us write the wave function as 

 （52）

and putting this into the above Schrödinger equation, we get 
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 （53）

This form of the equation has been well studied in the 
classical limit using the WKB formalism where the focus is 
on the stationary-state solution. Here, we consider this 
equation from a different point of view. We define the new 
function4）

 （54）

If the function S is given by the polynomial with respect to 
q up to second order, F is independent of q and depends 
only on t. Hereafter, we consider this case and define the 
new function W as

 （55）

Putting this back into eq.（53）, we get 

 （56）

This is the Hamilton-Jacobi equation that appears in classical 
mechanics and W is a Hamilton＇s principal function. 

To sum up the above argument, once we have the solution 
W of eq.（56）, we derive the function F from eq.（54） and also 
derive the function S from eq.（55）. Accordingly, we get the 
solution to the Schrödinger equation eq.（51）. Two examples 
will be discussed below. 

5.1　Free particle 
Eq.（21）is the solution of the Hamilton-Jacobi equation in 
classical mechanics, 

 （57）

From eqs.（21）, （54） and （55）, the function F is obtained 
by 

 （58）

Putting this F back to（55）， we obtain 

 （59）

The solution to the Schrödinger equation becomes

 （60）

This is the transformation function eq.（27） except for  
the arbitrary constant  which is calculated from 
normalization of the wave function. 

Next, we apply the Legendre transformation to eq.（21）， 
where the variables are transformed from W（q, Q, t） to W（q, 

P, t）, 

 （61）

　　　　　  （62）

This equation is also the solution to the Hamilton-Jacobi 
equation（57）. From eq.（54）, the function F vanishes. Then 
the transformed solution （52） becomes 

 （63）

The canonical transformation in quantum mechanics was 
studied in the early days of quantum mechanics5）, and has 
recently been reconsidered by some authors2, 3）. As already 
pointed out in3）, it is interesting that the generating functions 
eq.（21） and eq.（62） are transformed by the Legendre 
transformation, while the wave functions eq.（27） and 
eq.（63） are transformed by the Fourier transformation, which 
is easily accomplished by 

 （64）

　　 　  （65）

5.2　Harmonic Oscillator 
Eq.（34） is the solution of the Hamilton-Jacobi equation in 
classical mechanics, 

 （66）

From eqs.（21）, （54） and （55）, the function F is obtained 
by

 （67）

Putting this F back to （55）, we obtain 

 （68）

The solution to the Schrödinger equation is 

 （69）

This is the transformation function eq.（40） except for  
the arbitrary constant  which is calculated from 
normalization of the wave function. 

In a similar manner, we apply the Legendre transformation: 
W（q, Q, t） → W（q, P, t）, and obtain

 （70）

　　　 　  （71）
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From this equation, the function F becomes 

 （72）

then the solution to the transformed Schrödinger equation 
becomes 

 （73）

The same argument for the transformation is also applied 
to the Harmonic Os-cillator case. That is, the generating 
functions eq.（34） and eq.（71） are transformed by the 
Legendre transformation, while the wave functions eq.（40） 
and eq.（73） are transformed by the Fourier transformation. 

6．Discussion 

We have investigated the moving picture in quantum 
mechanics and could clearly formulate a representation of 
this picture. 

In contrast to the Heisenberg and Schrödinger pictures, 
we found that the trans-formed Hamiltonian becomes zero. 
This is similar to the case of the Hamilton-Jacobi theory in 
classical mechanics. It is unsuitable to use the Hamilton-
Jacobi represen-tation terminology for this picture because 
the Hamilton-Jacobi theory permits a wider variety of 

transformations than in the quantum case. For example, we 
take a harmonic oscillator. The following transformation 

 （74）

is really a canonical transformation and its transformed 
Hamiltonian becomes zero. But in this case, we never 
formulate a quantum representation for this transforma-tion, 
because the operators q^  and p^  are included in an arctangent 
function. 

We also discussed the relationship between the moving 
picture and the Hamilton-Jacobi theory in classical 
mechanics. This shows a new correspondence between 
classical and quantum mechanics. 
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