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On the torsion units of ZD,

Katsusuke Sekiguchi™

Abstract: For a finite group G, we denote by ZG (resp. OG) the integral group ring (resp. rational
group algebra) of G, and by U (ZG) (resp. U(QG)) the unit group of ZG (resp. QG). In this paper, we
will give torsion units in U (ZG) which are not conjugate to trivial units in U (ZG) but are conjugate to

them in U (QG).
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1. Introduction

For a ring S, we denote by U (S) the unit group of S. We
say that the element u in U(S) is the torsion unit if the
order of u is finite.

For a finite group G, we denote by ZG the integral group
ring of G. Then, obviously, =g (€ ZG) are torsion units in
U (ZG) . These units are called trivial units in U (ZG).

In this area, the following theorem is well-known :

Theorem 1. (c.f. [3])

Let G be a finite group. Then ZG has only trivial units if
and only if G is an abelian group of exponent 2, 3, 4, 6 or
G = E X Qs, where Qs is the quaternion group of order 8 and
E is an elementary abelian 2-group.

We denote by C, the cyclic group of order n, and D, the
dihedral group of order 2n.

Throughout this paper, Q, Z and N denote the set of
rational numbers, the set of rational integers and the set of
natural numbers, respectively.

The purpose of this paper is to give torsion units in ZD,
which are conjugate to the trivial units in U (QD,), but are
not conjugate to them in U (ZD,).

2. Cyclic algebras and representation

Let L be a finite Galois extension of the field K, with the
Galois group G (L/K). Suppose that G (L/K) is the cyclic
group of order n, with the generator z,

G (LK) =C,=(1), "=1.
Then we can construct the following cyclic algebra

(L/IK,u,a) =Lu® ® Lu' @+ DLy,
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where (L/K, u, a) is the L-vector space of dimension n,
with the basis {u°, u', -+, "'}, and the relations " = a and
ulu~'=1 (1), for | € L. Here, we identify «° with the unity
element of (L/K, u, a), so we can identify Lu® with L.
Hence we may assume that L C (L/K, u, a).
Then the following theorem is well-known :
Theorem 2. (c.f. [2])
(1) (L/K, u, a) is a central simple K-algebra.
(2) (L/K,u,a) = (L/K, v, a*) for eachs € Z such that (s,
n)=1.
(3) (L/K, u, a) =M, (K), if and only if a € N, (L*),
where N, is the norm map and L*=U(L). In
particular, when =1, (L/K, u, 1) = M, (K).

In the case when a =1, (L/K, u, 1)u=Lu is the irreducible
(L/K, u, 1)- module, where u=u"+u'+ -+ +u""". The left
action of (L/K, u, 1) is the following

(Ll + b+ -+ 1, Vxu= (x+ht(x) ++--+1,_ 17" "

(x))u,
where, [+ Lu' + - +1,-w' ' € (L/K,u, 1) and xu € L u.

Using this module, we can construct the matrix
representation of (L/K, u, 1),

T: (LK, u, 1) = M, (K).

For a positive integer n, we denote by ¢, the primitive n-th
root of unity. and by Q (¢,) the n-th cyclotomic field.

Let (&, +¢ ") be the maximal real subfield of Q(¢;,). Then
Q&) /Q(&+¢ ") is the cyclic extension and

Gal(Q(E)QG+E) =C= (), *=1.

Using this field extension, we can construct the cyclic algebra
(QE)QEG+E, 7, 1) =Q(&) ® Q(&)u

where =1, and uGu™"' =7 () =&,

Then (Q(&)/Q&+& ™M, 7, Du=Q(&)u=Q(g) (1+u)
is the irreducible (Q(¢,)/Q(&,+& "), =, 1)-module with
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the left action ¢, (xu) = ¢xu and u (xu) =7(x)u,

where ,, u € (Q(G)/Q(S+EY), 7, 1) and xu € Q({)u.
Note that Q(Z,) can be considered as Q((,+¢, ') - vector
space of dimension 2. We can choose its basis {1, &;}. So

we have

Q&) =Q(G+&) ® QG+ DG,

Using this basis, we can construct the matrix representation

T:(QG)/QE&G+E, 7, D= M(Q(G+E),

where

T(1}=(é?),

ﬂﬂ:(é“jﬁ )

And

T{cn) - ( ? Cn ;1;:1 ) '

T(at) = ( []} é ) -

T{”-t) + ”lCn + !‘J(IT + bl(;n"r}

_(at+b —a+ bo(Cu +¢71) + by
ar+b e +ar(G+¢ ) —b )7

where, ao, a1, bo, b1, € QG+ ).
3. Structure of QD,

Let n and d be the positive integers such that d is the
divizor of n and 3 = d.

Write C,={s), and D,={a, 7| " =17>=

Then there is an Q-algebra isomorphism

QCL/(24(0)QCH) = Q(Ca)

where ¢ is a generator of C,, i.e. C,

1, ot '=06"1).

= (o), and ¥, (X) is
the d-th cyclotomic polynomial. And

an = @ any‘]r{q)d an @ Q C{I

dn d|n
Using these isomorphisms, we have

QD,/(®4(0)QD,) = (Q(¢)/Q(&s + ¢ 1)o7 1),
for 3 = d, and

QD, = P QD,./(D4(0)QD,).
dln
Therefore, when n is odd,

QDI! = @

dn, 3=d

=~ P («Q

dln, 3=d

P mQu+¢)eQeq.

dln, 3=d

(QUC)/QCa+ ¢ "), 7

P ain

@/QGL+¢ ). m)eQaeqQ

12

And, when n is even

QD= P @

dln, 3=d

grf)/Q(Cd + gd_ l)'- T, 1) @ Q((O—/Oj) X (ﬂ)

1%

P Q/QL+¢)mNeQeQeQeQ

dln, 3=d
~ P MQL+G)eQeQeQeQ
dln, 3=d

where, we use the isomorphism
(QU)/QMCa+ ¢y 1) 1) = My(Q(Ca + ¢, 1))

as Q(¢y + ¢ 1)-algebras.
Therefore, when n is odd, there is a natural monomorphism
ZD, — P (22 + ¢ )P Z(r)
dn, 3=d

c P /zia+ G ezez

dln, 3=d

C EB My(Z

dln, 3=d

G+'Nezez

When n is even, there is a natural monomorphism

ZD, — P (Z1C)/2[¢a+ "7 1) D Z((o/0%) x (7))

dln, 3=d
<D

ZI/ 2+ Gl ) e ZeZoZa Z
dln, 3=d

C P Mmizut+g)ozozoze

dln, 3=d

4. Construction of units in ZG

In [5], we have given a method of construction of

nontrivial units. The result is the following ;

Theorem 3 ([5]).

Let G be a finite group. Take a unit u in ZG of order n and
f € ZG such that f+ fV +f@ ... 4 f=1) =0, where f
= fu,

Let ¢ be a unit in ZG such that ¢ is commutative with f and
u, and set

v=uvu, f.c)=f+ (fV +e)u+ fOu? ... 4 fla-byn-t,
Then v™ = ¢". In particular, v is a unit in ZG.

Proof. For the completeness of the paper, we will give a
sketch of the proof. For fi,g; € ZG, put @ = fy + fiu + fou’?
< A fuou™t and y

Then

= go+ g1t + gout® + - + gpu" L

ay = (fo+ fiu+ for? + -+ faa" ) (go + ru+ gow® + - -
1
T

+.‘f:r—lu”_l) = (fU.- fl-. f2! e ,fn_]){"l""
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where
o 0 Ga--- Gn—1
(1) (1) (1)
Gn-1 Go g1 In-2
W =
95"_1} gén—l] g:(;:—l} . g'gn—l]

Hence, for v = v(u, f,¢) = f+ (fY + u+ fPu? 4 -
+f(n—l)ur!—1!

we have
1
U
" = (f, _f(l) + e, f{2}, ,f{n—lj)yn—l ] ‘
:uri—l
where
fofWye @ fn-1)
I fm f('z] +e--- f{u—l}
Y = :
f f“) f{"!) - f{n—l] +e
f4+e fO .. 1)
We can show
(f, U 4¢, f@, ... fl-Dyyk

= Ck(f f(]), o 'f(k"'l) 4o f{ﬂ—l))
+ Ck(f["_l}, I, _f“)? e .f[u—2})

+ Ck(f[ﬂ—ﬂ')? f("—k‘*'l)‘ ce s f‘:ﬂ—ﬁ‘—n)
for every k, 0 = k =n— 1, by the induction on k .
Here we identify f with f.
When k£ =n — 1, this equation implies that
(fv f“} +c, ff'n’)! T ffrl—l})yn—l = (cn‘ 0,0, --- ,0}

Hence, we have

ot = (f’ f{]} +e, f[?}.. . ,f(u—l})yn—l ) =",

n—1

i
Example 1

Let D,,= (o, 7|o"=7%=1, ror '=0"") be the dihedral

group of order 2n.

Set

n—1 _n—1

I - T)

f=a(o—0"") tax(0® —07) + - ana(o

and

o(r, fil) =ai(c —o ') +azx(c? —o7%) + “‘a.%(a"'z

n—1 “ n=1

-0 7 )+H(l-m(c—at) —ft'z(o'rz_a_z)_”'a%(g :

n—1

—o 7 ))T.

when n is odd.
And set

n=2 n—2

f=ai(c -0 4ay(o? -0 2)+---a1;_-z(0 T —g 7))

and

n—2

o(r, f,1) =ai(0 —07") +ax(0® —07) + - ran2(o

n=2 n—2

—o 7 )+(1 —a.l(a—o‘l)—a2(02—0‘2)—---a¥(0 F]

n—2

A

when n is even.

Then, f+7f77' =0, hence v(r,f,1)*=1.

Example 2

Let G=Cr-Cy={o, 7 |o"=7"=1, 7or77 ! =% be

the metacyclic group of order 21.

Let f = ag + @10 + a20” + azo® + a,0* + as0° + ago® be
the element in ZG.

Then, 777 ' = ag + a,0° + aso’ + aze’® + a0 + az0° + ago®
and 72f772 = ag + ay0' + azo + a30” + a0 + as0° + ago®.
So,

fHrfrt+r2fr?
= 3ag + (a; + az + a4)(o + 0 + o) + (a3 + a5 + ag) (0 + 0°
+ o%).
Therefore , f +7f7 '+ 72f7~2 =0 if and only if
ag = ay + as + ay = ag + a; + ag = 0.
Hence , if we set
fo = a10 + as0? + azo® + (—a) — as)ot + azo® + (—az — as)o®
and
vo = v(T, fo, 1) = fo+ (Tfor ' + D)7 + (72 for )72,
then vj = v(r, fo,1)* =
In particular, when a; = a; = a3 = a5 = 1, then
fo=0+20"+0%— 20"+ 0° — 20°

and
v = v(T, fo,1) = 0 + 20° + 0* — 20" + 0° — 20"

+(0? + 20 + 0% — 20 + 0% — 20° + 1)1
+ (0% 4 20 + 0° — 20% + 0% — 20%)72.

5. Proof of the Main Theorem

The purpose of this section is to prove our main theorem.
Let Dy= (o, 7|o® =72 =1, 7or~! = 67') be the dihedral
group of order 6. For a(€ Q) , we write v(a) = a(c — o)
+{l—alc —oN}r

Then, v(a)? = 1, by Example 1

Note that, when a € Z, v(a) € U(ZD3).

We show the following:
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Main Theorem

(1) ©(1) is conjugate to 7 in U(QDj3) , but is not conjugate
to 7 in U(ZDsy).

(2) v(—1) is conjugate to 7 in U(QD;), but is not conjugate
to 7 in U(ZD3).

(3) v(l) and v(—1) are conjugate in U(ZDj).

To prove the theorem , we need the following result

Lemma 1 .

Let « = ag 4 a,0 + ay0® + byT + byoT + byo®T be the element
in QDjy .

Write hy=aqg + a10 + a20%, ho=by+bjo+bo?, wy=o—0!,
and wy =0+ 0L,

Then, the following statements are equivalent :

(1) o7 = v(a)x
(2) hy = aw by + (1 — aw;)hSY,
and

hy = awihy + (1 — aw )RV,

(3) hy+ hy = awy(by + ha) + (1 —aw))(BY + YY), (3-1)
and
hy — hy = awy (hy — hy) + (1 — aw ) (A — B{Y) (3-2)
(4) aj—as+by—b, =0 | (4-1)
and
—2aag + (a — 1)ay + (a + 1)as + 2aby + (1 —a)by  (4-2)
—(14+a)h, =0

Proof . (1) <= (2) <= (3)
Since
o7 = (hy + he7)7 = ha + 7 , and
v(a)r = awihy + (1 — awljhg” + (awihy + (1 = aw) )7,
the equivalence of (1), (2) and (3) is clear.
(3) = (4)
First , we show (3-1)«= (4-1)
The equality by + hy = awy (hy + hy) + (1 — aw, ) (A" + hS")
holds if and only if (1— aw,)(hy + ha — hi" — h$") = 0 holds.
But hy — hlll) = (a; — az)w; and hy — hg” = (b — by)wy ,
$0, by + hy — WY — B = (ay — ay + by — by)wy.
Hence
(1 — awy)(hy + ha — BV — B8Y)
= (1 —aw)(a1 — az + by — by)w,
= (a) —as + by — by)(wy — W‘f)
= (a; —az+ b, —b)(2a+ (1 —a)o— (1 —a)o?)
Therefore , the equality
hy + hy = aw; (hy + hy) + (1 — aw ) (R + 1Y)
holds if and only if
ay —ay + b — by =0 holds.
Next , we show (3-2) <= (4-2).
Since hy — hy = aw; (hy — ha) + (1 — awy) (WS — (V)

= awy (hy — hy — by + Ay + Y — iV

we have ,

s —hy — b8 + 1Y = awi (hy — ha — BS" + B{Y).
But h, — h{,” = (ay — az)w; and hy — h{;} = (b — bo)wy ,
50, hy — hy — hS” + b\ = (by — by — ay + az)wy.
On the other hand, since h; + hi” = 2ag + (a; + az)ws
and hy + h" = 2by + (by + by)ws , we have
hy — hy — S 4 BV = 2a5 — 2by + (ay + az — by — by
Therefore , we have
(by — by — ay + az)wy = awy(2ag — 2by + (ay + az — by — by)ws)
and
wi (b — bo — a1 + ag — 2aag + 2aby — ala; + as — by — by Jws ) =0.
Since wiws = —w; ., we have
wi(by— by — a1 + az — 2aay + 2aby + alay +az — by — by)) =0
So,
by —bs — ay + as — 2aag + 2aby + alay +as — b — b)) =0. O

By the results of section 2 , we have
QD; = (Q(6:)/Q(G + ¢ 1), 7 1) @ Q(7)
= (Q(G)/QAG+G).n)eQeQ
=MQG+G))eQe Q.

Since (3 +¢;' = —1, we have

=M(QeQeqQ.

Using this isomorphism, we have the matrix representations
T] 3 TZ? T3

T :QD; — (Q(G)/Q, 7 1)) — M2(Q)
T::QD; — M(Q) =Q,
Ty:QDs = M(Q)=Q,

by

(3 2) m-(2 3. - (1
T@:(é j) Tl(o'r)=<[]] é) Tl(g%):(:i ‘l’)
Ty(ap + ay0 + as0® + byt + byoT + boo®7)

-(3kh )

Ty(1) = Ta(0) = Tr(0?) = Ta(r) = Tr(o7) = Th(o’r) =1,

ﬂ.u—ﬂ.2+bg—b2
ay —az+by — by

T3(1) = Ta(o) = Ty(0?) =1,  Ts(r) = Ts(o7) = Ts(a’7)

=—1.



On the torsion units of ZD, 69

Further, there is a natural monomorphism
T=TN+T+T5:4ZD3 — (Z[C;;]f'Z, T, 1)@ Z{r)
C(ZlG)/2Z. 1 1)eZaZ
CMy(ZyaZaZ.

Proof of the Main Theorem .

(1) Let @ = ag + @10 + az0? + by7 + bio7 + bao’r
be an element in ZD; such that T = v(1)z. Then,
by Lemma 1,
ay —as+ by —by =0, and —2ay + 2a; + 2by —2b, = 0.
So,

Ti(x) = Ti(ap + a0 + azo? + byr + byoT + bao*7)

_ 2((}.0—{12) =l +C€2—b[}+b|
0 ap —ay — b+ by

Since det(T)(x)) = 2(ag — az)(ag — a; — bo + by) # £1 ,
where det(Ty(x)) is the determinant of Ti(z), we have Ti(x)
¢ GL(Z). So, we must have = ¢ U(ZD;). This means that
7 and v(1) are not conjugate in U(ZD;).

Next, we seek the element y € U(QD3) , such that yry™!
=v(1). Let y = ¢y + €10 + ¢20° + doT + dyoT + dy0®t be
the element in QD3 such that y7 = v(1)y.

Then , by Lemma 1, ¢; —co +dy —dy =0, and
—2cg+2¢0+ 2dy — 2d, = 0. Further, we need the following

conditions :

det(Ty(y)) #0, det(Ta(y)) # 0, det(T3(y)) # 0

So, we must have the following :

cp—cy+d —dy =0,
—900 + 23+ 2dy — 2z = 0,
2(eg —ea)(co—e1 —dyg+dy) #0
r:‘)+c1+(!g+(f{]+d1+d27én
co+cr+co—dy—dy —da #0

Ifweset ¢g=0,¢,=0, =1, dy=-1,d;, =1, dy =0,

2

then gy =" — 7+ o7, and these conditions are satisfied.

Indeed, we have

Ti(yo) = Ta(0? — 7+ 07) = ( ‘02 ? )

det(To(yo)) =1, and det(Ts(yo))=1. Hence, yy € U(QD;).
Write 5! = po + P10 + pao® + Qo7 + QOT + uo°T.

Then,

-1
» B -2 3 -1 3
) =1 = (5 1) =319 5 )
Toyy') =1, and Ty(y') =1

So, we must have
Po—P2tqo—q=—3
—P1+Pz—f;‘u+fh=%
p—prta—g=0
Po—p1r—gqo+ga=1
Potpitpetatatg=1
P+ptp—g—G—q@=1

The solution of this equation is

_ 1 —0. 1 1 1 —0
P(I—erl— .m—?qﬂ— 2‘111—2,(;2— N

Therefore

L1 1, 11
o =§+§a —§T+§O'T, and

1 1 1 1
yu'ryu_' = (02 -7+ :‘J’T)T(§ - 502 — §T + 507) =uv(1).

(2) The proof of (2) is similar to that of (1), so we omit it.
(3) follows from the following equality :

To(1)rt =w(-1). ]
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