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A Study on Rubber Shapes and Dynamic Characteristics of 
some Torsional Vibration Shear Type Rubber Dampers for 

High Speed Diesel Engine Crankshaft System
Tomoaki Kodama＊1， Yasuhiro Honda＊2

Abstract：This study refers to the relationship between dynamic characteristics and rubber shapes of 
some torsional vibration shear type rubber dampers by torsional stiffness and loss constants, which 
indicate their dynamic characteristics, against shape factors of rubber. The torsional stiffness in this 
study, which is called a complex torsional stiffness, consists of a typical torsional stiffness and a damping 
coefficient. The shape factor is determined as the ratio of free loaded area to loaded area of rubber. 
Four kinds of test shear type rubber dampers that only rubber shapes are different are used in this 
study. The test is engine experiment with the shear type rubber damper and exciting torsional vibration 
experiment. The experiment with shear type rubber damper is a high speed diesel engine test in the 
rated engine speed range with each test shear type rubber damper attached to the crankshaft system 
front edge. The frequency set in exciting torsional vibration test was made to be able to generator the 
frequencies occurred at the crankshaft system of the high speed diesel engine. Changing the shape of a 
pulley for exciting torsional vibration can change the exciting torsional vibration amplitude. The 
dynamic characteristics obtained from the experiment results are estimated in consideration of rubber 
shapes. The relation between amplitude dependence and the shape factor is particularly notified. As a 
results, the following knowledge can be provided.
［1］ The dynamic characteristics of the damper depend on shape factor.
［2］ The dependent tendency presents conspicuously with increase of the shape factor.
［3］ Rubber damper with smaller shape factor contributes to easily predict dynamic characteristics on 

the design stage. However, the damper of the small shape factor is hard to satisfy a torsional 
stiffness to tune to the torsional vibration mode of the crankshaft system of the high speed diesel 
engine.

Key words：Dynamic Characteristics, Shear Type Rubber Damper, Rubber Shape, Torsional Vibration, 
Shape Factor, Torsional Stiffness, Damping Coefficient, Area Ratio, Diesel Engine, 
Crankshaft System, Experiment, Forced Frequency Ratio, Amplitude Ratio

1．Introduction

In recent years, from the viewpoint of energy use in the 
high efficiency, saving of resources and environmental 
protection, a high speed diesel engine is reconsidered as the 
engine being able to work with even wide fuel except the 
light oil has the advantage in the thermal efficiency higher 
than a gasoline engine 1）～3）．On the other hand, we have 
many problem to solve such as reduction of the weight, 
reduction of noise, vibration and harshness（NVH） and 
engine performance improvement. One of the solutions is 
light weighting of the motion parts as one of the improvement 
methods of the engine performance. The light weighting of 

the engine crankshaft contributes to the rise of the engine 
revolution limit of the high speed diesel engine to increase 
the horsepower but there is a problem that increase of 
torsional vibration occurring in the crankshaft makes  
the crankshaft damage 1）～7）．As a  general reduction 
countermeasure of the torsional vibration, a shear type 
rubber torsional vibration damper is attached to a engine 
crankshaft system. Because the shear type rubber torsional 
vibration damper has amplitude dependence, frequency 
dependence, temperature dependence, strain rate dependence 
and so on, it is difficult to grasp the dynamic characteristic 
precisely 8）～15）．Furthermore, the difference of the rubber 
shape changes the dynamic characteristics even if the rubber 
of the same material was employed to a rubber damper 16）～25）．

This study referred to the relationship among dynamic 
characteristics and rubber shapes of some torsional vibration 
shear type rubber dampers by rigidities and loss constants, 
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which indicate dynamic characteristics, against shape 
factors of rubber 1）～3）, 4）～6）．The torsional stiffness in this 
study, which is called a complex torsional stiffness, consists 
of typical stiffness and a damping coefficient. The shape 
factor means the ratio of free loaded area to loaded area of 
rubber. In other words, this shape factor can be called area 
ratio by regarding rubber as incompressibility materials. 
Four kinds of test shear type rubber dampers that only 
rubber shapes are different are used in this study. The rubber 
materials of the test dampers are natural rubber and rubber 
hardness：Hs＝50. The experiment is engine test with the 
rubber damper and exciting vibration experiment. The 
experiment with rubber damper is an engine experiment in 
the rated engine speed range with each test rubber damper 
attached to the crankshaft system front end. The frequency 
set in exciting torsional vibration test was made agree with 
frequency occurred at the crankshaft system of the diesel 
engine. Changing the shape of exciting vibration pulleys  
can change the exciting torsional vibration amplitude 7）～11）. 
The dynamic characteristics obtained from the experiment 
results are estimated in consideration of rubber shapes. The 
relation between amplitude dependence and the shape factor 
is particularly notified.

2．Test Shear Type Rubber Dampers and Reduction 
Control on Torsional Vibration

The combustion pressure in the cylinder of the high speed 
diesel engine is higher than that of the gasoline engine. As a 
result, bigger torsional vibrations occurs on the engine 
crankshaft system by exciting torsional vibration force and 
crank and piston mechanism. A torsional vibration shear 
type rubber damper is generally used to reduce the torsional 
vibration occurring on the crankshaft system of the in-line 
multi-cylinder high speed diesel engine.

Figure 1 shows the genuine torsional vibration shear type 
rubber damper for in-line 6-cylinder high speed diesel engine 

of total displacement volume 6.211 ［Litter］．The output of 
the test engine brake power is 212 ［kW］ and the brake torque 
is 402 ［Nm］．The major specifications of the test diesel 
engine are shown in Table 1. Figure 2 shows the torsional 
vibration amplitude curves occurring in the pulley end of the 
crankshaft of the test diesel engine without a rubber damper, 
as the experimental diagram shown in Figure 3. The overall 
value of the amplitude at the resonance point of the sixth 
vibration of the main torsional vibration component exceeds 
the permission torsional displacement of the crankshaft 
system. Figure 4 shows the torsional vibration amplitude 
curves of the pulley end of the crankshaft system attached 
the shear type rubber damper shown in Figure 1. It can be 
confirmed that this shear type rubber damper absorbing a 
part of the torsional vibration energy of the crankshaft 
system reduces the torsional vibrations. However, the 
torsional vibration reduction may not be controlled as the 
designer intended because the dynamic characteristics of the 
torsional vibration shear type rubber damper are influenced 
on the dependencies of amplitude, frequency, and strain rate 
temperature.

It is difficult to completely predict the dynamic 

Figure 1　�Genuine Shear Type Rubber Damper ［Damper 
STD（S）］

Figure 2　�Torsional Vibration Amplitude Curves of Crankshaft 
Pulley End without Shear Type Rubber Damper
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characteristics with these dependences in the design stage of 
the shear type rubber damper. Materials of the rubber, shore 
hardness and rubber shapes make the prediction more 
difficult. These influence factors can be divided into internal 
factors and external factors. The combinations of all these 
factors change the dynamic characteristics.

The relations of the dynamic characteristics with 
amplitude dependence and rubber shapes are investigated in 
this study to clear the rubber shape and these influence 
factors.

Figure 5 and Table 2 indicate the trial manufactured test 
rubber dampers of which rubber shapes are only different 
based on the genuine rubber damper shown in Figure 1 and 
their specifications. The rubbers of all rubber dampers are 
natural rubber with shore hardness ：Hs＝50. Table 2 
indicates the inertia moment of damper housing and inertia 
ring of each test rubber damper. The different values of the 
moment of inertia can be adjusted to be a constant value by 
attaching a gear for torsional vibration measurement with 
the damper housing and the inertia ring respectively.
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Figure 4　�Torsional Vibration Amplitude Curves of Crankshaft 
Pulley End with Genuine Shear Type Rubber Damper 

［Rubber Damper STD（S）， Moment of Inertia：
ISRD＝1.812×10-2 ［kgm2］， I， II：Node Vibration］
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Figure 3　�Schematic Diagram of Torsional Vibration 
Measurement for Engine Experiment

Figure 5　Trial Manufactured Test Shear Type Rubber Dampers with Only Different Rubber Shapes and Damper STD（S）
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Figures 6 and 7 indicate torsional vibration amplitude 
curves of the test shear type rubber dampers. It is understood 
that the control on torsional vibration effects of each test 
shear type rubber damper are different comparing resonance 
frequencies and resonance amplitudes of the sixth torsional 
vibration that is a main vibration order component. It can be 
supposed that the difference of the rubber shape changes the 

dynamic characteristics of each test shear type rubber 
dampers. However, it is difficult for reasons of the statement 
above to solve dynamic characteristics every influence factor 
of a shear type rubber damper attached to a high speed 
diesel engine crankshaft system. In this study, the relations 
of the amplitude dependence of the dynamic characteristic 
and the rubber shapes are tried to solve based on the results 
obtained from the torsional vibration experiment by original 
manufactured exciting torsional vibration machine.

3．Numerical Calculation of the Dynamic Characteristic 
Value of the Rubber Damper and the Results

It is necessary to dismantle it every torsional vibration 
order component because the torsional vibration waveform 
occurring in the crankshaft system of the engine is a 
compound wave. The value of the dynamic characteristic of 
the shear type rubber damper can be numerical calculated 
by the next expressions.

The motion equation of the inertia ring of the damper is 
the next expression.

 （1）
here, θSRD,d：torsional vibration angular displacement of 
damper housing ［rad］， θSRD,p：torsional vibration angular 
displacement of the damper inertia ring ［rad］， ISRD：inertia 
moment of damper inertia ring ［kgm2］， CSRD：damping 
coefficient of damper rubber ［Nms/rad］， KSRD：torsional 
stiffness of damper rubber ［Nm/rad］．

The equation（1）gives the dynamic torsional stiffness 
and damping coefficient values as follows.

 （2）

 （3）

here, ωSRD：forced frequency ［rad/s］， MSRD：amplitude ratio 

［-］， θSRD,do：torsional vibration amplitude of 

damper housing ［rad］， θSRD,p：torsional vibration amplitude 
of the damper inertia ring ［rad］．Furthermore, the absolute 
value of  the torsional  stiffness  and the ratio of 
torsional stiffness aSRD are given in the next equations.

 （4）

Table 2　�Main Specifications of Test Shear Type Rubber 
Dampers
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Figure 6　�Torsional Vibration Amplitude Curves of Crankshaft 
Pulley End with Shear Type Rubber Damper A 

［Moment of Inertia：ISRD＝1.374×10-2 ［kgm2］， I， 
II：Node Vibration］

Figure 7　�Torsional Vibration Amplitude Curves of Crankshaft 
Pulley End with Shear Type Rubber Damper C 

［Moment of Inertia：ISRD＝1.782×10-2 ［kgm2］， I， 
II：Node Vibration］

0.0

0.2

0.4

0.6

0.8

1.0

0 1200 1450 1700 1950 2200 2450 2700 2950
Engine Speed     r/min

To
rs

io
na

l A
m

pl
itu

de
 d

eg
 

: 3rd Order Vibration : 4.5th Order Vibration
: 6th Order Vibration : 7.5th Order Vibration
: 9 th Order Vibration : Over All

Damper Housing 
Moment of Inertia : ISRD = 1.782 10-2

I-6th Order 
Vibration 

II-6th Order
VibrationI-4.5th Order

Vibration 

0  1000           1500           2000           2500         3000

Order Vibration 

[kgm2]



15
A Study on Rubber Shapes and Dynamic Characteristics of some Torsional Vibration Shear  
　　　　 Type Rubber Dampers for High Speed Diesel Engine Crankshaft System 　　　　

 （5）

Figures from 8 to 11 indicate the numerical calculated 
values obtained from equations（4）and（5）．These 
results mean that the relations between the absolute value of 
the torsional stiffness and the torsional stiffness are linear 
and the damping torque CSRD・ωSRD are constant as the aSRD 
is constant. In other words, the damping coefficient that 
divided CSRD・ωSRD by ωSRD shows that it decrease with  
the increase of the forced frequencies. On the other hand, 
the torsional stiffness of each damper is changed by the 
difference of the rubber shape as the aSRD of each rubber 
damper is different. This fact means that the difference of 
rubber shape influences on amplitude dependence and 
frequency dependence of the dynamic characteristics. 
Choice of the rubber shape that is hard to be affected by each 
dependency will give a better control on torsional vibration 

effect, if the dependencies of the dynamic characteristics are 
not analyzed adequately.

In the same torsional angular displacement, the strains of 
the rubber are different by rubber shape. Here, a coefficient 
to indicate a strain conversion factor is introduced. The 
strain conversion factor is defined as necessary coefficient 
to convert a torsional angular displacement into strain. The 
rubber shapes of the test dampers can be divided into the 
radial direction adhesion type and the axial direction 
adhesion type as shown in Figure 1 and 4. But the genuine 
damper of Figure 1 is similar as a combination type of the 
radial direction adhesion type and the axial direction 
adhesion type.

［1］The radial direction adhesion type
Area ratio：USRD,r

 （6）

Figure 8　�Relationship between Torsional Stiffness and 
Absolute Value of the Torsional Stiffness ［Rubber 
Damper A］

Rubber Damper A

Rubber Damper B

Figure 9　�Relationship between Torsional Stiffness and 
Absolute Value of the Torsional Stiffness ［Rubber 
Damper B］

Rubber Damper STD（S）

Figure 11　�Relationship between Torsional Stiffness and 
Absolute Value of the Torsional Stiffness ［Rubber 
Damper STD（S）］

Rubber Damper C

Figure 10　�Relationship between Torsional Stiffness and 
Absolute Value of the Torsional Stiffness ［Rubber 
Damper C］
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Representative position of the strain：ρSRD,r

 （7）

Strain： SRD,r

 （8）

Strain conversion factor：USRD,r,μ

 （9）

［2］The axial direction adhesion type
Area ratio：USRD,a

 （10）

Representative position of the strain：ρSRD,a

 （11）

Strain：γSRD,a

 （12）

Strain conversion factor：USRD,a,μ

 
（13）

here, rSRD,2：outside radius of damper rubber ［m］， rSRD,1：
inside radius of damper rubber ［m］， lSRD：distance between 
adhesion sides of damper rubber ［m］， l'

SRD：axial direction 

length of rubber ［m］， μSRD：radius ratio ［-］．

Figure 12 indicates the values of a to these strain 
conversion factors. The values of the aSRD decrease with the 
increase of the strain conversion factor greatly. This means 
decrease of the torsional stiffness with increase of strain 
occurring by rubber shape. However, the values of dynamic 
characteristics receiving amplitude dependency or frequency 
dependency respectively, cannot be evaluated as the values 
of these dynamic characteristics are numerical calculated 
based on an engine wearing experiment result. It is the 
reason that the relation of the exciting amplitude and forced 

frequency cannot be found in the torsional vibration of  
the engine crankshaft as shown in Figure 1. Therefore an 
exciting vibration machine was manufactured in order to 
analyze f requency dependence and the ampl i tude 
dependence influencing on the dynamic characteristics.

4. Exciting Torsional Vibration Experiment

The exciting torsional vibration experiment changing 
some exciting vibration amplitude is carried out to analyze 
the amplitude dependence of the dynamic characteristics. 

4.1　 Constitution of the Torsional Vibration Experiment 
Apparatus

An original exciting torsional vibration experiment 
apparatus was designed and manufactured to achieve the 
purpose.

This exciting torsional vibration experiment apparatus 
consists of a pulley for exciting torsional vibration, a motor, 
and a rubber damper wearing pulley. The shape of a pulley 
for exciting vibration is hexagon to generate the sixth 
vibration same as the test diesel engine.

An outline of the exciting torsional vibration experiment 
apparatus is shown in Figure 13. The up-and-down motion 
of a transmission belt occurring by an exciting torsional 
vibration pulley transmits the sixth vibration to a rubber 
damper wearing pulley. The shape change of the exciting 
torsional vibration pulley can change the amplitude of the 
sixth vibration.

4.2　 Principle of Exciting Torsional Vibration Experiment 
Apparatus

It is supposed that Point AEX in the circumference of the 

Figure 12　�Rubber Shape Specifications of Test Rubber 
Damper
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pulley for damper wearing moves to A'
EX, when point BEX on 

the transmission belt moves up to B'
EX by pulley for exciting 

torsional vibration placed between a motor and pulley for 
damper wearing as shown in Figure 14. The movement can 
give the rotation angle：θEX to rubber damper wearing 
pulley. This angle of rotation produces torsional vibration to 
the damper.

The relationship between torsional angular displacement：
θEX and quantity of lift of the belt：lEX, which is occurred by 
exciting torsional vibration pulley, are expressed in the next 
equation.

 （14）

The upper equation is arranged in θEX.

 （15）

Here, θEX：rotational angle of the pulley for wearing rubber 
damper ［rad］， REX：radius of the pulley for wearing rubber 
damper ［m］， LEX：belt length between the pulley for 
wearing rubber damper and pulley for exciting torsional 
vibration amplitude ［m］， lEX：lifted quantity of belt ［m］．

The quantity of lift of the belt was decided based on the 

torsional vibration amplitude which the experiment engine 
produced. As the values to substitute for equation（15）， it 
is assumed that REX＝80 ［mm］， LEX＝300 ［mm］ and lEX＝
1， 2 and 3 ［mm］．As numerical calculation results, 
theoretical torsional amplitude θEX are 0.191, 0.382 and 0.570 

［degrees］．

4.3　Experimental Results
Some examples of the results of the exciting torsional  

vibration experiment are shown in Figures 15 to 16. Figure 
15 shows the exciting torsional vibration amplitude curves 
without a rubber damper. When forced frequency exceeds 
280 ［Hz］， it is found that the change of the exciting torsional 
vibration amplitude is bigger. Accordingly the frequencies 
range more than 280 ［Hz］ should be excluded from the 
measurement range.

Figures 17 and 18 indicate torsional vibration amplitude 
curves of rubber damper B and damper STD （S）， but the 
difference of the resonance frequency can be confirmed. As 
the inertia moments of the inertia ring of both the rubber 

Figure 13　Schematic Diagram of the Exciting Torsional Vibration Experiment Apparatus

Figure 14　�Principle of Exciting Torsional Vibration Experiment 
Apparatus
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dampers are constant value, it can be supposed that the 
difference of the torsional stiffness is the factor of this 
difference. Based on this experiment result, the relations 
among the change of the dynamic characteristics by the 
exciting vibration amplitude and the rubber shape must be 
investigated. The dynamic characteristics values can be 

numerical calculated in the above-mentioned procedure by 
the use of the experiment results obtained from the exciting 
torsional vibration experiments.

In other words it can bring each dynamic characteristics 
value to substitute the experiment results for equation（5）
from equation（2）．

4.4　Dynamic Characteristics
Figures 19 to 22 show the relations between the absolute 

value of the torsional stiffness  and the torsional 
stiffness of each test rubber damper. These figures show that 
the tendencies of dynamic characteristics provided from  
the exciting torsional vibration experiments are the same as 
the tendencies of dynamic characteristics provided from the 
engine wearing experiments. Figure 23 shows the relation 
among the ratio of torsional stiffness aSRD and the exciting 
torsional vibration amplitude. The amplitude dependence of 
the dynamic characteristics of rubber damper B is the 
smallest and damper STD （S）， is the biggest. It is supposed 

Figure 19　�Relationship between Torsional Stiffness and 
Absolute Value of Complex Torsional Stiffness 

［Rubber Damper A, Exciting Amplitude：0.191 
［degree］， aSRD：0.825］

Figure 20　�Relationship between Torsional Stiffness and 
Absolute Value of Complex Torsional Stiffness 

［Rubber Damper B, Exciting Amplitude：0.191 
［degree］， aSRD：0.999］

Figure 17　�Torsional Vibration Amplitude Curves of Rubber 
Damper B ［Exciting Amplitude：0.191 ［degree］， 
Moment of Inertia：1.812×10-2 ［kgm2］］
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Figure 18　�Torsional Vibration Amplitude Curves of Rubber 
Damper STD （S） ［Exciting Amplitude：0.191 
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Figure 16　�Torsional Vibration Amplitude Curves of Rubber 
Damper STD （S） ［Exciting Amplitude：0.191 

［degree］， Moment of Inertia：2.125×10-2 ［kgm2］，
Forced Frequency：280 ［Hz］］
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that this root is the difference of strain produced by rubber 
shape. On the other hand, the difference of the value of aSRD 
under the same exciting amplitude is considered with the 
difference of the area ratio as shown in Figure 24. This 
figure shows the ratio of aSRD in the other amplitudes to aSRD 

in the exciting torsional amplitude 0.191 ［degree］．
It is clear that the dynamic characteristic values are 

influenced by rubber shape greatly in this way.

5．Relationship between Dynamic Characteristics 
and Rubber Shape

Furthermore, The relation among damping coefficient and 
dynamic torsional stiffness are investigated introducing the 
loss factor that is determined as ration of damping torque 
CSRD・ωSRD to torsional stiffness KSRD.

Ratio of the torsional stiffness aSRD to the loss factor 

 are expressed in the next equation using

equation（4）．

 
（16）

The upper equation can be rewritten on the 

 （17）

The loss factor is also influenced by strain.
Torsional stiffness and damping coefficient can be 

expressed in the next expression in consideration of rubber 
shape.

 （18）

Here, GSRD：young modulus ［Pa］， ηSRD：coefficient of viscosity 
［Nms/rad］， USRD,d：shape factor of damper determined as 
ratio of second section pole moment to distance between the 
adhesion side ［−］

Figure 24　�Relationship among the Ratio of Torsional Rigidity 
aSRD and Shape Factor ［if aSRD＝1 at Theory Exciting 
Torsional Amplitude＝0.191 ［degree］］

Figure 22　�Relationship between Torsional Rigidity and 
Absolute Value of Complex Torsional Rigidity 

［Rubber Damper STD （S）， Exciting Amplitude：
0.191 ［degree］， aSRD：0.875］
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Figure 23　�Relationship among the Ratio of Torsional Stiffness 
aSRD and the Exciting Torsional Vibration Amplitude

Figure 21　�Relationship between Torsional Stiffness and 
Absolute Value of Complex Torsional Stiffness 

［Rubber Damper C, Exciting Amplitude：0.191 
［degree］， aSRD：0.820］
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As shown in expression（17）， it may be said that the loss 
coefficient is in proportion to strain as it changes with the 
values of the aSRD as follows.

 （19）

Figure 25 shows the relation among the loss factor and 

the aSRD to . Each curve is drawn based on 

equations（17）and（18）．The dynamic characteristics 
provided by the experiment results are expressed on each 
curve. damper B is smallest, and damper STD （S）， is biggest 
in the change of each dynamic characteristic value with 
increase of the exciting torsional vibration amplitude. In 
addition, damper B is maximum in a value of aSRD, and 

damper C becomes the minimum of the test dampers. It is 
proper to think that these differences under the same exciting 
torsional vibration condition are caused by rubber shape. 
Area ratio affects the change of the aSRD in the exciting 
vibration amplitude mainly, and the values of the aSRD are 
influenced in strain conversion factor.

Equation（4）to numerical calculate absolute value of 
the torsional stiffness  can be rewritten in the next 
equation.

 （20）

here, MSRD,3：ratio of amplitude of rubber to amplitude of 
inertia ring. ［-］

In other words the first clause ISRD・ω2
SRD of the most 

right side of the upper equation is a clause without the 
influence of the rubber shape. In contrast, the second clause 

 is a clause with the influence of the rubber shape. 

Figure 25 shows  in the change of exciting torsional

vibration amplitudes obtained from the results of engine 
wearing experiments and torsional exciting vibration 

experiments. This figure indicates that  of all of the 

test dampers decrease with increase of exciting torsional 
amplitudes. The tendency to decrease is strong in a range of 
the smaller exciting torsional vibration amplitude, and a 
decreasing tendency to decrease becomes in particular weak 
in a range of the bigger exciting torsional vibration amplitude. 

Figure 26 indicates the changes of  in the exciting 

amplitudes of test damper obtained from the engine wearing 
experiments and the exciting vibration experiments.

It is estimated that strains occurring in the rubber of each 
test damper are different by rubber shape in a constant of 
the exciting torsional vibration amplitude. If the relation of 
exciting vibration torque TEX and torsional stiffness KSRD are 
TSRD＝KSRD・θSRD, Ro, the substitution of equation（8）or

（12）into this equation give the next equation.

 （21）

As TEX and KSRD of all test dampers are approximately equal 
under the same exciting torsional vibration amplitude  

condition as shown in Figure 26,  is also nearly equal. 

However, the quantity of strain is different every damper 
greatly because the strain SRD is in proportion to the 
strain conversion factor USRD,μ. Accordingly this fact means 
that a damper with bigger quantity of strain has bigger Figure 25　Relationship among aSRD and Loss Factor
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damping coefficient. Such a damper causes increase of the 
vibration absorption energy and will show larger temperature 
dependence.

The main requirement item to a rubber damper is 

reduction of the bigger amplitude of the crankshaft system. 
Rubber damper used natural rubber is expected a control on 
vibration effect by the torsional stiffness more than damping 
coefficient. Furthermore, a control on vibration effect in the 
bigger exciting torsional vibration amplitude is important. 
These mean that damper B with the smallest shape factor 
and strain conversion factor of the test dampers has the 
biggest control on vibration effect.

6．Conclusions

This study refers to the investigation on the relation 
between dynamic characteristics and rubber shape through 
engine wearing experiment and exciting torsional vibration 
experiment using four kinds of rubber dampers with only 
different rubber shape. As some results of this investigation, 
the knowledge is provided as follows.

［1］ The dynamic characteristics of the damper depend on 
shape factor.

［2］ The dependent tendency presents conspicuously with 
increase of the shape factor.

［3］ Damper with smaller shape factor contributes to easily 
predict dynamic characteristics on the design stage. 
However, the rubber damper of the small shape factor 
is hard to satisfy a torsional stiffness to tune to the 
vibration mode of the crankshaft system of the engine. 

Definition of Symbols
Show in major symbols and definitions.

aSRD：Ratio of torsional stiffness ［-］．
CSRD：Damping coefficient of damper rubber ［Nms/rad］．
GSRD：Young modulus ［Pa］．
ISRD：Inertia moment of damper inertia ring ［kgm2］．
KSRD：Torsional rigidity of damper rubber ［Nm/rad］．

：Absolute value of the torsional stiffness ［Nm/rad］．

L： Belt length between the pulley for wearing rubber 
damper and pulley for exciting vibration amplitude 

［m］．
LEX： Belt length between the pulley for wearing rubber 

damper and pulley for exciting vibration amplitude 
［m］．

lEX：Lifted quantity of belt ［m］．
lSRD： Distance between adhesion sides of damper rubber 

［m］．
l'

SRD：Axial direction length of rubber ［m］．

MSRD：Amplitude ratio ［-］．

MSRD,3： Ratio of amplitude of rubber to amplitude of inertia 
ring. ［-］．

Figure 26　�The Change of Exciting Torsional Vibration 
Amplitudes obtained from the Results of Engine 
Wearing Experiments and Exciting Torsional 
Vibration Experiments
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R：Radius of the pulley for wearing rubber damper ［m］．
REX：Radius of the pulley for wearing rubber damper ［m］．
rSRD,1：Inside radius of damper rubber ［m］．
rSRD,2：Outside radius of damper rubber ［m］．
TEX：Exciting torsional vibration torque ［Nm］．
USRD,a：Area ratio of axial direction adhesion type［-］．
USRD,d： Shape factor of damper determined as ratio of 

second section pole moment to distance between the 
adhesion side ［-］．

USRD,r：Area ratio of radial direction adhesion type ［-］．
USRD,a,μ： Strain conversion factor of axial direction adhesion 

type ［-］．
USRD,r,μ： Strain conversion factor of radial direction adhesion 

type ［-］．

： Strain of axial direction adhesion type.
［-］．

： Strain of radial direction adhesion type 
［-］．

ηSRD：Coefficient of viscosity ［Nms/rad］．

μSRD：Radius ratio ［-］．

θEX： Rotational angle of the pulley for wearing rubber 
damper ［rad］．

θSRD,d： Torsional vibration angular displacement of damper 
housing ［rad］．

θSRD,do： Torsional vibration amplitude of damper housing 
［rad］．

θSRD,p： Torsional vibration angular displacement of the 
damper inertia ring ［rad］．

θSRD,po： Torsional vibration amplitude of the damper inertia 
ring ［rad］．

：Representative position 

　　　　of the strain of axial direction adhesion type ［-］．

： Representative position of the strain of radial direction 
adhesion type ［-］．

ωSRD：Forced frequency ［rad/s］．
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