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Numerical continuum modeling of muscle is a very interesting research topic. In typical con-

tinuum materials, the stress is uniquely determined from the strain. However, this rule no longer

applies in muscles undergoing contraction. The actomyosin complexes in muscle [1] constantly

change their conformations during the contraction phase of events such as attachment, power

strokes of the lever arm, and dissociation (Figure 1A). Furthermore, the rates of the transitions de-

pend on the stain of the lever arm (Figure 1B), which is aŠected by the continuum muscle contrac-

tion. In computer simulations of a beating heart, the modeling of these molecular behaviors is

necessary for correctly reproducing the muscle contraction. The contractile force in cardiac cells

rises when Ca2＋ ions are released from the sarcoplasmic reticulum (SR), and relaxes when these

ions are sequestered back into the SR. In many earlier studies, the temporal change of contractile

force under a given Ca2＋ transient was computed by a system of ordinary diŠerential equations

(ODEs). However, the ODEs cannot easily model the stochastic and cooperative behaviors of ac-

tomyosin complexes. For example, in a healthy beating heart, the left ventricular pressure (LVP)

(Figure 1C, black line) falls to almost zero at the end-systole, but nearly 10 of the peak Ca2＋ con-

centration remains in the cytosol (Figure 1C, red line). Furthermore, the LVP falls much more

rapidly than the Ca2＋ concentration. These quick relaxation properties of cardiac muscle are as-

sumed to originate from the cooperative behavior between the neighboring actomyosin complexes

and the stochastic power-stroke mechanism of the myosin lever arms, which depends on the strains

in the lever arms. Unless we correctly model these molecular properties, we fail to reproduce the

quick relaxation of the cardiac muscle. The consequence is insu‹cient blood-ˆlling into the ven-

tricular cavity during the diastolic phase.

Multiscale Model

Failed attempts to simulate a beating heart by the existing ODE models have motivated our

direct simulations of the individual molecules in our beating heart model. To realize this idea, we

couple the macroscopic continuum dynamics by the ˆnite element method (FEM) with the

microscopic molecular dynamics by the Monte Carlo (MC) method. These two approaches diŠer

on both spatial and time scales. In our approach [2], we embed the sarcomere model (Figure 1D) of

actomyosin complexes (Figure 1A) into each tetrahedral element of the FEM (Figure 1E). Here, we

assume that a single sarcomere force represents the contractile tension generated by all cardiac cells

in the element. Usually, we set the time step as DT＝1 ms in the FEM analysis, and subdivide this

value into a ˆner time step Dt＝10 ms for the MC analysis.
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Figure 1 Multiscale modeling. A: MC model of the actomyosin complex. The contraction force is contributed by three

attached states (XBPreR, XBPostR1 and XBPostR2). The transitions between NXB and PXB are in‰uenced by the

states of the T/T unit above the myosin head through the coe‹cients Knp, Kpn and the states of the neighbor-

ing myosins through the cooperative factors gn, g－n (g＝40). B: Myosin lever arm. C: Transients of the

averaged Ca2＋ concentration over the ventricle (red lines) and the left ventricular pressure (LVP: black line).

D: Sarcomere model composed of actomyosin complexes. E: FEM ventricle model showing the twisted ˆber

orientations along the transmural line.
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Coupling of Molecules and Continuum

In our approach, the macroscopic active stress tensor Sact in the ˆnite element time interval [T,

T＋DT ] is implicitly determined, ensuring compatibility between the molecular and continuum vir-

tual works as shown in Figure 2.

To account for the state transitions of the actomyosin complexes during this time interval, we relate

the strain rates on three scales (actomoysin complex, sarcomere and continuum). In the FEM anal-

ysis, the stress under contractile tension Tf is represented by the second Piola-KirchhoŠ stress ten-

sor:

Sact＝
Tf

l
f◯× f＝∑

i, j

Tf

l
fi fjei◯×ej, (1)
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Figure 2 Strain rates in the model (top) and the virtual works (bottom) on the three scales: the actomoysin complex,

the sarcomere and the continuum.
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where the unit vector f＝
3

∑
i＝1

fiei denotes the ˆber orientation at the material point X, and l denotes

the stretch along the ˆber orientation f given by

l＝∥&x
&X

f∥＝
3

∑
i, j,k＝1

&xk

&Xi

&xk

&Xj
fi fj .

The insertion of l into the denominator of (1) is justiˆed by the inˆnitesimal relationship Tfdl＝
Sact･dE, where E is the Green-Lagrange strain tensor. The contractile tension Tf is computed by

summing the molecular forces produced by the actomyosin complexes arranged along the actin ˆla-

ments in the sarcomere model:

Tf＝
RS

SA0

2

ns

ns

∑
is＝1

nm

∑
im＝1

FM(im, is).

Here, SA0 (＝1000 nm2) is the cross sectional area of a single actin ˆlament, RS denotes the volume

ratio of the sarcomere (＝0.5), and nm (＝38) is the number of myosin molecules surrounding the

binding sites arranged along one of the two spirals in the actin ˆlament. ns is the number of actin

ˆlament samples in the sarcomere model. The force generated by an individual myosin molecule is

given by

FM(im, is)＝
Dt

DT

nt

∑
k＝1

dA,k(im, is)kM
T＋kDtx(im, is),

where the FEM time step interval [T, T＋DT ] is subdivided into nt MC time steps. dA,k takes 1 in

the attached case and 0 in the detached case for k＝1, …, nt. kM denotes the spring constant of the
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myosin lever arm, and T＋kDtx is the strain of the myosin lever arm at time T＋kDt. This strain is a

function of the initial strain at the attachment (xinit) under the thermal ‰uctuation, the power stroke

from the latest attachment from tA to T＋kDt (T＋kDtxPS), and the length change due to the ˆlament

sliding:

T＋kDtx(im, is)＝xinit＋T＋kDtxPS＋
SL0

2 {f
T

min(tA,T)

_ldt＋T＋DT _l(T＋kDt－max(tA, T))}. (2)

Here, SL0/2 is the unloaded half-sarcomere length that relates the muscle stretch rate along the

ˆber orientation ( _l) to the shortening velocity of the sarcomere (－SL0 _l/2).

xPS is incremented by the working stroke size s during the forward transition from the pre-

power stroke to the post-stroke state, and decremented by s in the reversal stroke from the post-

stroke to the pre-stroke state. The rate constants of the forward ( f ) and backward (b) transitions

between the pre- and post-stroke states, are determined as it follows the relationship given by the

statistical equilibrium:

f (x)

b(x)
＝exp (－

EPost－EPre＋kM((x＋s)2－x)2/2

kT ), (3)

where k and T denote the Boltzmann constant and the temperature, respectively, and EPre and EPost

are the free energies of the myosin head in the pre- and post-stroke states, respectively. The diŠer-

ence EPost－EPre corresponds to the partial transfer of the chemical energy obtained by ATP hydrol-

ysis to the mechanical stress energy generated by the strain increment s. At the current FEM step in

[T, T＋DT ], the ˆlament sliding contribution (third term in the right hand side of (2)) is computed

by implicitly assuming the stretch rate _l at T＋DT. Through this implicit scheme, we can correctly

incorporate the temporal stiŠness into the Jacobian matrix, and hence stabilize the Newton-

Raphson (NR) iteration in the FEM analysis within a reasonable time step DT. Note that the NR

steps iteratively reuse the computational results obtained in the MC steps.

Beating Heart Simulation Results

Figure 3 shows the behavior of the sarcomere model (Figure 3B) embedded in the inner layer

of the left ventricular free wall (Figure 3A). At the end-systolic phase (range surrounded by the

broken lines in Figure 3D, E and F), the relative frequency of the backward to forward transitions

increases (Figure 3F) as the sarcomere shortening decelerates (Figure 3E: black line), and the sarco-

mere contraction ˆnally ends. A quick stretch (Figure 3E: black line) immediately follows the in-

creased frequency of backward transitions (Figure 3F: red line). Together with cooperation among

the neighboring myosin molecules, these backward transitions quickly reduce the blood pressure

(Figure 3D: red line), facilitating the quick ˆlling of blood into the left ventricle (Figure 3D: black

line). Figure 3G presents the contours of the arm strain distribution. In the post stroke state

(XBPostR2), the center of the distribution shifts to larger strains towards the end-systolic phase. Such

a distribution shift has a major impact on balancing the frequencies of the forward and backward

transitions determined by (3).

We are currently developing more detailed molecular models under the post-K supercomputer
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Figure 3 Simulation results of a beating heart. Distribution of the contractile tension Tf (A) and the cross bridges in

the sarcomere model embedded in the inner layer (B) at T＝0.25 s. Also shown are the time transients of the

left ventricular pressure and volume (D), the sarcomere force and length (E), the frequencies of the forward

and backward transitions (F), and the strain distributions in the lever arms of the sarcomere model embedded

in the inner layer (G).

*1 This work is supported in part by MEXT as Strategic Programs for Innovative Research Field 1 Supercomputational

Life science and a social and scientiˆc priority issue (Integrated computational life science to support personalized and

preventive medicine) to be tackled by using post-K computer.
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project*1. This study will provide insights into the molecular-level mechanisms that control the

state transitions. Such a study is necessary for linking various mutants of contractile proteins with

heart failures.
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